P6148 [USACO20FEB]Swapity Swapity Swap S--倍增

本文介绍了一种利用矩阵快速幂技术解决大规模区间翻转问题的方法,针对n*m<10^7的限制,通过将转换过程化为矩阵操作并应用快速幂算法,实现了log级别的时间复杂度,有效解决了当过程重复K(10^9)次时的效率问题。

题目大意:不断翻转区间m次,这个过程再重复K(10^9)次。

n*m<10^7.第一次模拟时间复杂度是没有问题的,关键是后面的k,应该需要log的时间复杂度。

首先想到的是将转换化为矩阵的方式,然后用矩阵快速幂,可是N*N的矩阵太大了。

不用矩阵行不行?用数组的转换方式直接换。类似快速幂的倍增,这样空间时间都可以了。

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10;
int a[N],tmp[N],res[N],res2[N];
int n,m,k;
void pr(int a[]){
	for(int i=1;i<=n;i++)cout<<a[i]<<" ";
	cout<<endl; 
}
int main(){
	scanf("%d%d%d",&n,&m,&k);
	for(int i=1;i<=n;i++)a[i]=res[i]=i;
	int l,r;
	for(int i=1;i<=m;i++){
		scanf("%d%d",&l,&r);
		for(;l<r;l++,r--)
			swap(a[l],a[r]);
	}
//倍增
	while(k){
		if(k&1){
			for(int i=1;i<=n;i++)
				tmp[i]=res[a[i]];
			memcpy(res,tmp,sizeof(tmp));
		//	cout<<"********"<<k<<endl;
		//	pr(a);
		//	pr(res);
		}
		k=k/2;
		memcpy(res2,a,sizeof(a));
		for(int i=1;i<=n;i++)
			tmp[i]=res2[a[i]];
		memcpy(a,tmp,sizeof(tmp));	
	}
	for(int i=1;i<=n;i++)printf("%d\n",res[i]);	
}

 

### 问题解析 USACO 2020年2月比赛中,题目“Swapity Swap”要求解决一个关于数组变换的问题。题目描述如下: Farmer John 有 $ N $ 头奶牛,按顺序编号 $ 1 $ 到 $ N $。他让奶牛按照以下操作进行 $ M $ 轮变换: 1. **第一步**:选择前 $ K $ 头奶牛,将它们反转。 2. **第二步**:选择后 $ K $ 头奶牛,将它们反转。 目标是确定经过 $ M $ 轮变换后,每头奶牛的最终位置。 ### 解题思路 此问题可以通过模拟变换来解决,但直接模拟 $ M $ 次变换可能效率较低,特别是当 $ N $ 和 $ M $ 都很大时。因此,需要优化算法。 #### 1. 发现周期性 由于每一轮变换是固定的,数组的状态会在若干轮后重复。通过记录每一轮变换后数组的状态,可以找到一个循环周期。一旦找到周期,只需要计算 $ M $ 对周期取模,从而减少计算量。 #### 2. 模拟与优化 对于每一轮变换,可以使用数组操作来实现反转逻辑。具体步骤如下: - 对数组的前 $ K $ 个元素进行反转。 - 对数组的后 $ K $ 个元素进行反转。 通过记录每一轮变换后的状态,可以快速找到循环周期。 #### 3. 代码实现 以下是一个高效的实现方法,结合了周期性优化: ```python def swapity_swap(N, K, M): # 初始数组 arr = list(range(1, N + 1)) # 用于记录每一轮变换后的状态 seen = {} for i in range(M): # 将状态转换为元组以便存储 state = tuple(arr) # 如果状态已出现,找到周期 if state in seen: remaining = M - i cycle_length = i - seen[state] # 只需要再执行 remaining % cycle_length 次即可 for _ in range(remaining % cycle_length): transform(arr, K, N) return # 记录当前状态 seen[state] = i # 执行变换 transform(arr, K, N) # 如果没有循环,直接返回当前状态 def transform(arr, K, N): # 前K个元素反转 arr[:K] = arr[:K][::-1] # 后K个元素反转 arr[-K:] = arr[-K:][::-1] ``` ### 示例说明 对于 $ N = 7 $, $ K = 3 $, $ M = 2 $ 的情况: - 初始数组为 `[1, 2, 3, 4, 5, 6, 7]` - 第一轮变换后变为 `[3, 2, 1, 4, 6, 5, 4]` - 第二轮变换后变为 `[1, 2, 3, 4, 5, 6, 7]` 可以发现,经过两轮变换后数组恢复原状,表明周期为 2。 ### 复杂度分析 - **时间复杂度**:最坏情况下为 $ O(M \times K) $,但由于周期性优化,实际运行时间显著减少。 - **空间复杂度**:需要额外空间存储状态,最坏情况下为 $ O(N \times M) $。 ### 适用范围 该方法适用于 $ N $、$ K $ 和 $ M $ 都较大的情况,尤其适合需要处理周期性问题的场景。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值