P2176 [USACO11DEC]RoadBlock S / [USACO14FEB]Roadblock G/S

该篇博客主要探讨了USACO比赛中的一个问题,涉及到图论和最短路径算法。首先,通过Dijkstra算法求解从起点到终点的最短路径,然后将路径上的边权重翻倍并重新计算最短路径。博客详细展示了算法实现过程,并输出了两次计算后的最短路径长度差值,以此来分析道路封锁对路径的影响。
摘要由CSDN通过智能技术生成

​​​​​​[USACO11DEC]RoadBlock S / [USACO14FEB]Roadblock G/S - 洛谷

#include <bits/stdc++.h>
#define LL long long 
using namespace std;
const int maxn = 1e6 + 10;
const int mod = 1e9 + 7;
const int INF = 1e9 + 10;
const int N = 1e6;

int n,m,a[105][105],pre[105],t,dis[105],ans1,ans2;
bool vis[105];
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);

    cin >> n >> m;

    for(int i = 1;i <= m;i ++){
        int x,y,z;
        cin >> x >> y >> z;
        a[x][y] = z;
        a[y][x] = z;
    }

    for(int i = 1;i <= n;i ++){
        dis[i] = INF;
        pre[i] = 0;
    }

    t = 1;
    pre[1] = 0;
    vis[1] = 1;
    dis[1] = 0;

    for(int i = 1;i < n;i++){
        for(int j = 1;j <= n;j ++)
            if(a[t][j] > 0 && dis[t]+a[t][j]<dis[j]){
                dis[j] = dis[t] + a[t][j];
                pre[j] = t;
            }
            int x = INF;
            for(int j = 1;j <= n;j ++){
                if(dis[j] < x && !vis[j]){
                    x = dis[j];
                    t = j;
                }
            }
            vis[t] = 1;
    }

    ans1 = dis[n];

    // for(int i = 1;i <= n;i ++)
    //     cout << dis[i] <<" ";
    // cout << endl;
    int p = n;
    while(pre[p]!= 0){
        a[p][pre[p]] *= 2;
        a[pre[p]][p] *= 2;
        
        memset(vis,0,sizeof(vis));
        for(int i = 1;i <= n;i ++)
            dis[i] = INF;
        
        t = 1;
        vis[1] = 1;
        dis[1] = 0;

        for(int i = 1;i < n;i++){
            for(int j = 1;j <= n;j ++)
                if(a[t][j] > 0 && dis[t]+a[t][j]<dis[j]){
                    dis[j] = dis[t] + a[t][j];
                }
                int x = INF;
                for(int j = 1;j <= n;j ++){
                    if(dis[j] < x && !vis[j]){
                        x = dis[j];
                        t = j;
                    }
                }
                vis[t] = 1;
        }
        // for(int i = 1;i <= n;i ++)
        //     cout << dis[i] << " ";
        // cout << endl;
        ans2 = max(ans2,dis[n]);
        //cout << ans2 << endl;
        a[p][pre[p]]/=2;//类似dfs回溯
        a[pre[p]][p]/=2;
        p=pre[p];

    }

    cout << ans2 - ans1 << endl;

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值