POJ1201 Intervals 差分约束

23 篇文章 0 订阅
8 篇文章 0 订阅
对差分约束理解还是不深入,约束条件总是漏掉。
题目中的约束条件
s[a]-s[b]>=n
s[i]-s[i-1]>=0
s[i]-s[i-1]<=1
s[i]表示整数集合Z从0到i这一范围内的整数个数
然后把第一个和第二个的约束乘以-1就可以编程最短了。
Intervals
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 17050 Accepted: 6383

Description

You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn.
Write a program that:
reads the number of intervals, their end points and integers c1, ..., cn from the standard input,
computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i=1,2,...,n,
writes the answer to the standard output.

Input

The first line of the input contains an integer n (1 <= n <= 50000) -- the number of intervals. The following n lines describe the intervals. The (i+1)-th line of the input contains three integers ai, bi and ci separated by single spaces and such that 0 <= ai <= bi <= 50000 and 1 <= ci <= bi - ai+1.

Output

The output contains exactly one integer equal to the minimal size of set Z sharing at least ci elements with interval [ai, bi], for each i=1,2,...,n.

Sample Input

5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1

Sample Output

6
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<vector>

using namespace std;

#define MAXN 50500
#define INF 0xFFFFFF

struct node
{
	int to;
	int dis;
};

vector<node> g[MAXN];
int  dis[MAXN];
int l[MAXN],r[MAXN],num[MAXN];
bool in[MAXN];
int n,m,mm;
int mins,maxs;

void init()
{
	node temp;
	maxs=0;
	mins=INF;
	for(int i=1;i<=n;i++)
	{
		scanf("%d%d%d",&l[i],&r[i],&num[i]);
		mins=min(l[i]-1,mins);
		maxs=max(maxs,r[i]);
	}
	for(int i=mins;i<=maxs;i++)	
		g[i].clear();
	for(int i=1;i<=n;i++)
	{
		temp.to=l[i]-1;
		temp.dis=-num[i];
		g[r[i]].push_back(temp);
	}
	for(int i=mins+1;i<=maxs;i++)
	{
		temp.to=i;
		temp.dis=1;
		g[i-1].push_back(temp);
		temp.to=i-1;
		temp.dis=0;
		g[i].push_back(temp);	
	}
}

void spfa(int s)
{
	queue<int> q;
	for(int i=mins;i<=maxs;i++)
	{
		dis[i]=INF;
		in[i]=false;
	}
	dis[s]=0;
	in[s]=true;
	q.push(s);
	while(!q.empty())
	{
		int tag=q.front();
		q.pop();
		in[tag]=false;
		for(int i=0;i<g[tag].size();i++)
		{
			int j=g[tag][i].to;
			if(dis[j]>g[tag][i].dis+dis[tag])
			{
				dis[j]=g[tag][i].dis+dis[tag];
				if(!in[j])
				{
					in[j]=true;
					q.push(j);
				}
			}
		}
	}
}

int main()
{
	while(cin>>n)
	{
		init();
		spfa(maxs);
		cout<<-dis[mins]<<endl;
	}
	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值