毫米波雷达与视觉融合目标检测

毫米波雷达-视觉融合感知方法(前融合/特征级融合/数据级融合)

分享一个自动驾驶之心的报告:毫米波雷达与视觉融合目标检测。

作者主页为:https://www.zhihu.com/people/nacayu

1. 毫米波雷达与相机融合检测背景

毫米波雷达显著特性有:可以测量目标的位置、速度、角度,此外毫米波雷达能够全天候全天时工作,受天气影响较小。

在这里插入图片描述
下面是毫米波雷达工作原理,原始的毫米波雷达数据是RDA数据块,分别表示距离、多普勒和角度,但在实际使用中往往得到的是点云数据。

在这里插入图片描述
下面是毫米波雷达和激光雷达的对比:

  • 毫米波雷达得到的点云是很稀疏的,同时是不均匀的;而激光雷达是稠密且均匀的;
  • 同时激光雷达和毫米波雷达发射方式也不同,激光雷达是射线发射,毫米波雷达是锥形发射;
  • 数据格式也完全不同,毫米波除了位置信息,还有RCS和速度信息,而激光雷达只能得到物体形状信息;

在这里插入图片描述

2. 主流融合方法

首先介绍多传感器融合的必要性,以及由此而引入的问题。

在这里插入图片描述
下面是不同融合方式的优劣势对比及代表工作,RadSegNet是一个用于做3D检测的代表性工作。
在这里插入图片描述
这里会重点介绍下面三个红字标出的方法。

在这里插入图片描述
首先是CRFNet,这里也给出了复现代码。
在这里插入图片描述
第二个就是CenterFusion,很经典的一个融合工作。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
第3个工作是CRAFT。

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
下面是特征融合的总结:

  • 如何选择适合Radar的特征表示形式,point表征,voxel表征还是proposal表征等;
  • 激光雷达中的特征提取方法能否迁移到Radar中,二者都可以看作是点云数据;
  • 如何高效的关联两个模态的数据;
  • Radar表征能力不断加强;
  • 寻求多阶段的融合方法;
  • 引入先验信息;

在这里插入图片描述
下面是已有的Radar数据集

在这里插入图片描述


3. 其它领域应用简介

在这里插入图片描述

4. 未来机遇与挑战

4D毫米波雷达的兴起未来会促进相机与毫米波雷达的感知能力。之前在两个不同的4D毫米波雷达数据集上进行测试发现,一个数据集中平均每帧4D毫米波雷达会包含330个3D点,一个数据集中平均每帧会返回2700个3D点,点数远远多于传统的3D毫米波雷达,且同时还提供高度信息,无疑会大幅提高二者融合感知能力。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

毫米波雷达视觉融合是一种将毫米波雷达视觉传感器的数据进行融合处理的技术。通过将毫米波雷达视觉传感器的数据进行融合,可以获得更全面、准确的环境感知信息。 毫米波雷达是一种利用毫米波频段的电磁波进行探测和测距的传感器。它可以在复杂环境下实现高精度的障碍物探测和测距,并且不受光线、雨雪等自然条件的影响。然而,毫米波雷达对目标的形状、纹理等细节信息探测能力相对较弱。 视觉传感器则可以通过摄像头获取环境的图像信息,包括目标的形状、颜色、纹理等细节信息。视觉传感器具有很高的空间分辨率和丰富的表达能力,可以对目标进行更加准确的识别和分类。然而,视觉传感器在低光、强光、雾霾等特殊环境下的性能会受到一定影响。 将毫米波雷达视觉传感器的数据进行融合,可以充分利用两种传感器的优势,提高环境感知的准确性和可靠性。例如,可以通过毫米波雷达获取目标的粗略位置和速度信息,再通过视觉传感器获取目标的细节信息,从而实现更准确的目标检测和跟踪。另外,毫米波雷达的能力可以弥补视觉传感器在特殊环境下的不足,提高系统的鲁棒性。 毫米波雷达视觉融合技术在自动驾驶、智能安防、无人机等领域具有广泛的应用景,可以提高系统的感知能力和决策精度,增强系统的安全性和可靠性。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值