大模型
leo0308
AI攻城狮
展开
-
深入理解Transformer中的位置编码
由于注意力的作用机制,不论输入序列的顺序如何,输出结果都是一样的。也就是丢失了位置信息。但是对于语言模型, 我们都知道顺序是很重要的, 所以需要对输入序列额外注入位置信息。从图上可以看出, 序列位置与位置编码有个近似的线性关系, 同时还有一定的周期特性,因此位置编码一定程度上反应了序列中的位置信息。Transformer 论文中采用了简单的相对位置编码, 用sin 和cos函数表示序列中不同位置的信息。横轴表示嵌入维度, 纵轴是token在序列中的位置, 如输入是一个长度是32的序列。原创 2024-11-03 22:01:47 · 483 阅读 · 0 评论 -
Next-Token Prediction is All You Need 智源发布原生多模态大模型Emu3
Emu3模型只基于下一个token预测,无需扩散模型或组合方法,即可完成文本、图像、视频三种模态数据的理解和生成。与当前由扩散模型(如Stable Diffusion)和组合方法(如结合 CLIP视觉编码器和LLM)所主导的多模态大模型有显著不同。原创 2024-10-21 20:38:54 · 250 阅读 · 0 评论 -
OpenVLA-首个开源视觉语言动作大模型
在VLA这个领域, 比较著名的工作当数谷歌的RT系列, 有RT-1, RT-2, RT-X等等。但是RT系列没有开源代码, 想要复现还是有难度的。最重要的是, 没有提供fine-tune的方法, 无法根据自己的需要进行微调。现在大模型已经卷到了机器人领域。在视觉语言模型(VLM)的基础上, 加入机器人的动作(Action) 这一模态, 视觉语言动作大模型(VLA)是目前大模型应用于机器人的流行方法。原创 2024-10-21 20:10:05 · 382 阅读 · 0 评论 -
大模型api谁家更便宜
GPT-4o mini 使用费用是0.15美元/1M 输入token, 0.6美元/1M 输出token,大约是GPT-4o的1/30, 性价比很高。ERNIE-4.0-Turbo-8K,使用费用是30元/1M 输入token, 60元/1M 输出token。GPT-4o 使用费用是5美元/1M 输入token, 15美元/1M 输出token,需要注意,百度千帆平台上还提供其他家的模型调用服务, 如llama, yi-34b等。拿最新的旗舰模型来看,原创 2024-09-10 20:01:26 · 374 阅读 · 0 评论 -
Ollama加载gguf模型
在 https://huggingface.co/models 上搜索对应模型的gguf文件下载即可。如 Qwen/Qwen2-0.5B-Instruct-GGUF。文件格式没要求, 用简单的txt文件就行。原创 2024-08-02 19:14:32 · 983 阅读 · 0 评论 -
Ollama运行qwen2:7b 输出乱码
现象: 运行qwen2:7b模型, 无论输入是什么, 输出都是无意义的GG。原创 2024-07-23 20:00:24 · 1132 阅读 · 0 评论 -
解决llama_index中使用Ollama出现timed out 问题
【代码】llama_index中使用Ollama是出现timed out 问题。原创 2024-07-22 21:38:01 · 899 阅读 · 0 评论 -
huggingface离线模型使用方法
参考:https://huggingface.co/docs/transformers/installation#offline-mode原创 2024-07-22 00:02:47 · 439 阅读 · 0 评论 -
os.environ设置环境变量与export的不同
使用llama_index 中的huggingface模型时, 由于网络问题, 无法访问外网, 我用os.environ设置了镜像站, 发现下载的时候这个镜像站地址没起作用, 还是去huggface.co下载模型了。os.environ和export 都可以用来临时设置环境变量。然而它们的使用却有不用的效果。后就是从镜像站下载了。原创 2024-07-19 21:15:37 · 273 阅读 · 0 评论 -
解决huggingface模型不能下载的几个方法
设置以下环境变量:前提是你有可以访问外网的代理。原创 2024-07-17 21:22:02 · 2376 阅读 · 0 评论 -
crewAI中通过Ollama调用本地模型的两种方式
crewAI中默认使用的gpt4的模型, 在环境中配置即可使用。但openai的api毕竟是要花钱的, 况且现在对大陆地区做了封禁, 使用起来不是那么方便。而Ollama可以方面的运行本地的大模型, 既不用花钱, 又可以在本地进行使用。crewAI中也支持Ollama使用本地模型。原创 2024-07-10 20:45:25 · 878 阅读 · 0 评论 -
Ollama + Open WebUI实践
在上一篇文章中, 我们已经学会了如何用Ollama在本地运行大模型。但是所有的操作都是在命令行中进行的, 不是很直观。如果有一个漂亮的UI界面就更好了。Open WebUI 就是一个可以实现UI界面的开源工具, 可以生成类似openAI风格的UI界面。原创 2024-03-28 23:44:05 · 1989 阅读 · 0 评论 -
Ollama实践
当前各种大模型层出不穷,但想要在本地运行起来一个大模型还是有一定门槛的。并且模型众多, 每个模型都有自己不同的配置和使用方法,使用非常不便。Ollama就是一个非常好的工具, 可以让你方便在本地运行各种大模型。原创 2024-03-27 23:10:57 · 582 阅读 · 0 评论 -
RAG( Retrieval Augmented Generation)实现
想要把大模型在本地跑起来还是有一定门槛的, 并且模型众多,每个大模型的使用和配置都不同, 实在比较麻烦。Langchain是一个大模型模型的开源框架,核心是以pipeline的形式串联大模型应用构建的全流程, 使用它可以大幅简化大模型的应用开发流程。RAG是一种技术方法, 通过信息检索给大模型提供事实数据, 从而增强大模型生成的真实性, 可以理解为大模型的一个外挂知识库。所以总结一下, Langchain和Ollama就是2个非常重要的辅助工具, 使用他们可以非常便捷地实现RAG。原创 2024-03-26 23:00:47 · 559 阅读 · 0 评论 -
手把手教你训练自己的Lora
本文教你手把手训练自己的Lora模型, 炼制的是Stable Diffusion的Lora模型。原创 2023-08-26 15:25:54 · 8646 阅读 · 0 评论 -
LoRA微调方法详解
大模型高效finetune方法LoRA。原创 2023-08-15 23:19:48 · 19650 阅读 · 0 评论 -
AIGC之stable diffusion(SD)炼丹总结
AIGC之stable diffusion炼丹总结。原创 2023-08-09 23:47:15 · 1817 阅读 · 0 评论