组合数学 | 递推关系和母函数

目录

母函数

常系数递推关系

1.常系数齐次递推关系

2.常系数非齐次递推关系

3.求推关系式的解方法:

整数拆分

指数型母函数


母函数

定义:利用给定序列a0,a1,a2,…所构造的函数F(x)=a0+a1x+a2x2+…称为序列a0,a1,a2的母函数。

特点:

  • 计数工具
  • 不考虑收敛性
  • 不考虑实际上的数值
  • 形式幂级数

🌰:两个骰子掷出n点,有多少种可能?

 两个骰子掷出n点的可能的方法数为求G(x)=(x+x^2+..+x^6)^2中x^n的系数

常用公式:

  1. 1/1-x = 1+x+x2+x3+…+xn                          序列1的母函数
  2. 1/1-2x = 1+2x+22x2+23x3…+2nxn        序列2n的母函数,n从0开始
  3. 1/1+x = 1/1-(-x) = 1+(-1)1x1+(-1)2x2-(-1)3x3+…+(-1)nxn = 1-x+x2-x3+…+(-x)n

序列(-1)n的母函数,n从0开始

  1. 1/1+2x = 1/1-(-2)x = 1+(-2)1x1+(-2)2x2+(-2)3x3+…+(-2)nxn = 1-2x+(-2) 2x2+(-2) 3x3+…+(-2) n xn               序列(-2)n的母函数,n从0开始
  2. 1/a+bx = 1/a * 1/1+bx = 1/a * (1/1-(-b/a)x) = 1/a * (1-(b/a)x+(b/a)2x2-(b/a)3x3+…+(-b/a)nxn)  序列(-b/a)n的母函数,n从0开始
  3. (1-x)2 = 1+2x+3x2+…+(n+1)xn+…

例:已知序列h1,h2,h3的递推关系为hn = 2hn-1+1,求其序列hn

解:假设母函数H(x) = h1x+h2x2+h3x3+…                          假设母函数

给递推关系式hn=2hn-1+1两边同乘xn,分别对n=1,2,3…求和,(约定h0=0)        根据递推关系构造母函数形式

左边hn = h1x+h2x2+h3x3+… = H(x)

右边2hn-1+1 = (2h0+1)x+(2h1+1)x2+(2h2+1)x3+…

                  = (2h1x2+2h2x3+…)+(x+x2+x3) = 2x(h1x+h2x2+h3x3+…)+x(1+x+x2+…)

              = 2xH(x)+x/(1-x)

根据左右两边相等得到

       H(x) = 2xH(x)+x/(1-x)

       (1-2x)H(x) = x/1-x

       母函数H(x) = x/(1-x)(1-2x)

设H(x) = A/1-x + B/1-2x                    转换成1/1-x的形式

       = A-2Ax+B-Bx/(1-x)(1-2x)                 通分

       = A+B-(2A+B)x/(1-x)(1-2x)

因为A+B-(2A+B) x= x,即A+B-(2A+B) = 1        求出A、B各的值

       得出二元一次方程组:

       A+B=0

       -2A-B=1

       A=-1,B=1,

所以H(x) = 1/(1-x)(1-2x) =1/1-2x – 1/1-x           得出母函数

       H(x) = (1+2x+22x2+…+)-(1+x+x2+…)

              =(2-1)x+(22-1)x2+…

              =Σ(2n-1)xn

所以序列hn = 2n-1,n=1,2…

思路:求出递推关系式,假设母函数,根据递推关系式构造成母函数的形式(两边同乘xn,再分别对n=1,2,3…求和),再通过假设的母函数和递推关系式运算化简(分母转换成(1/1-x)+(1/1-x)的形式),求出其母函数,最后根据母函数得出其序列

常系数递推关系

1.常系数齐次递推关系

Hn-a1Hn-1-a2Hn-2-…-arHn-r = 0

等式左边系数为实常数,且不能有常数项,右边等于0

求特征方程:

Hn-a1Hn-1-a2Hn-2-…-arHn-r = 0                r阶齐次递推关系

xr-a1xr-1-a2xr-2-…-ar-1x-ar=0                   特征方程

由齐次递推关系找出特征方程:每个系数后面都有x的r次方,次方从小到大排列,最后一个是常数项,特征方程的系数与齐次递推关系系数一致,一一对应

1.有r个不同的特征根

设q1,q2,…qr是递推关系的r个互不相同的特征根,即当q1≠q2其一般解为:

Hn = c1q1n+c2q2n+c3q3n+…+crqrn

例:an-an-1-12an-2=0, a0=3,a1=26

解:特征方程:x2-x-12=0,特征根:x1=4,x2=-3

其通解为An = c1(4)n + c2(-3)n,          (有不同的特征根,使用上面的公式)

由初始条件a0=3,a1=26确定c1和c2,得到方程组:

  • a0 = c1(4)0 + c2(-3)0=3   a1 = c1(4)1 + c2(-3)1 = 26
  • a0 = c1 - c2=3   a1 = 4c1 - 3c2=26

c1=5,c2=-2

所以递推关系An = 5*4n-2*(-3)n

2.特征根有重根

设q1,q2,…qr是递推关系的特征根,且q1=q2=q,其一般解为:

二重根 Hn = (c1+c2n)qn                  (q1=q2=q)

三重根 Hn = (c1+c2n+c3n2)qn (q1=q2=q3=q)

四重跟同理…

例:an-4an-1+4an-2=0,a0=1,a1=4

解:特征方程式:x2-4x+4=0   (x-2)2=0

特征根:x=2 是二重特征根

其通解为An = (c1+c2n)2n           (特征根有重根)

初始条件:a0=1,a1=4,得到方程组

a0 = c1 = 1  a1 = (c1+c2)21 = 4

  • c1=1,c2=1

所以递推关系An = (1+n)2n

2.常系数非齐次递推关系

H0-a1Hn-1-a2Hn-2-…-arHn-r = f(n)

其中a1,a2,…ar是实常数,等式左边不能有常数项,等式右边f(n)非零

例:Hanoi塔问题的递推关系式为an=2an-1+1, n=2, 3, 4, ...;a1=1, a2=2

解:由an=2an-1+1增阶得an-1=2an-2+1             因为此递推关系式是非齐次,所以需要增阶来转换成齐次

两式相减,得齐次递推关系式an-3an-1+2an-2=0

特征方程:x2-3x+2=0,特征根:x1=1,x2=2

其通解为an=c11n+c22n

初始条件:a1=1, a2=2,得出方程式:

a1 = c1+2c2=1,a2 = c1+4c2=2

c1=-1,c2=1

所以递推关系为:an=2n-1

3.求推关系式的解方法:

  •   如果是非齐次递推关系需要通过增阶转换成齐次

  • 根据齐次递推关系式写出特征方程、特征根
  • 根据特征根写出显式表达式(不同根Hn = c1q1n+c2q2n+…,重根Hn = (c1+c2n)qn
  • 把初始条件代入显式表达式中
  • 求解,得出递推关系的解an

整数拆分

整数拆分:把正整数n分解成若干正整数n1、n2、…nk的和,n=n1+n2+…+nk,相当于把n个无区别的球放入n个无标志的盒子,盒子允许空着,也允许放一个以上的球。

例:求方程x1+x2+x3+x4=20整数解的个数,其中x1>=2,x2>=2,x3>=1,x4>=3

解:G(x) = (x2+x3+x4+…)(x2+x3+x4+…)(x+x2+3+…)(x4+x5+x6+…)

              = x8(1+x+x2+…)4 = x8(1/1-x)4 = x8(1-x)-4    x

                     = x8ΣC(4+k-1,k)xk                         [ (1-x)-n = ΣC(n+k-1,k)xk ]

C(4+12-1,12) = C(15,12) = C(15,3)=455

对应的球盒模型:20个无区别的球放入4个有区别的盒子里,要求第一个盒子最少2个,第二个盒子最少放2个,第三个最少放1,第四个最少放3。就相当于20-(2+2+1+3)=12个无区别的球放入4个有区别的盒子里,C(4+12-1,12)=C(15,12)=C(15,3)

常用公式:

  1. (1-x)-n = ΣC(n+k-1,k)xk
  2. (1+x+x2+…)( 1+x2+x4+…)…(1+xm+x2m+…) =1/(1-x)(1-x2)…(1-xm)
  3. (1+x+x2+…)( 1+x2+x4+…)…(xm+x2m+…) =xm/(1-x)(1-x2)…(1-xm)

指数型母函数

指数型母函数:设数列a0,a1,a2…,则它的指数型母函数是

Ge(x) = a0+a1(x/1!)+a2(x2/2!)+…+ak(xk/k!)

*排列使用指数型母函数,组合使用一般母函数。

常用公式: 

例:设用数字2,4,6,8(数字可重复使用)可组成an个含奇数个2,偶数个6且至少含一个8的n位数(n>=2),写出数列{ an }的指数型母函数,并求出an的表达式

解:设an的指数型母函数为


转自人民大学张同学笔记

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值