可靠指标与失效概率

转自:http://course.cug.edu.cn/cugThird/armoured_concrete/Chapter03/3.2.2.htm

3.2.2 可靠指标与失效概率

1 、失效概率 P f :
设构件的荷载效应 S 、抗力 R 都是服从正态分布的随机变量且二者为 线性关系 。 S 、 R 的平均值分别为 us 、uR ,标准差分别为 σs 、σR ,荷载效应为 S 和抗力为 R 的概率密度曲线如右图所示。 按照结构设计的要求,显然 R 应该大于 S 。重叠区是 R<S 的区域,其大小反映了抗力 R 和荷载效应 S 之间的概率关系,即为结构的失效概率。重叠的范围越小,结构的失效概率越低。均值相差越大,或方差(离散程度)越小,则重叠越少,失效概率越小。对结构,则提高结构构件的抗力,减小 和 的离散程度,可以提高结构构件的可靠程度。对 Z=R-S , Z 也是服从正态分布的随机变量的概率密度分布曲线。 Z<0 事件的概率,也是构件的失效概率,可表示为:
 
按上式计算失效概率 pf 比较麻烦,故改用一种可靠指标的计算方法。 
2 、可靠指标 β 
因为失效概率 pf 与 uz 和 σz 值有关 ,取其比值可反映失效概率情况即为可靠指标 ,故取 
   则   
可以看出β大,则失效概率小 。β 和 pf 一样可作为衡量结构可靠度的一个指标,称为可靠指标 。β 与 pf 之间有一一对应关系。
 
注意:应用上式计算β的前提是:
(1)随机变量 ( 例如,结构抗力和荷载效应等 ) 应服从正态分布,
(2)极限状态方程是线性的。
结构按承载能力极限状态设计时,应对不同情况下的目标可靠指标β值作出规定。结构和结构构件的破坏类型分为(1)延性破坏——有明显的预兆β可稍低;(2) 脆性破坏——破坏前没有明显的预兆,β 高一些。

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值