洛谷 P2036 [COCI2008-2009 #2] PERKET

传送门:P2036 [COCI2008-2009 #2] PERKET

题目描述

Perket 是一种流行的美食。为了做好 Perket,厨师必须谨慎选择食材,以在保持传统风味的同时尽可能获得最全面的味道。你有 n 种可支配的配料。对于每一种配料,我们知道它们各自的酸度 s 和苦度 b。当我们添加配料时,总的酸度为每一种配料的酸度总乘积;总的苦度为每一种配料的苦度的总和。

众所周知,美食应该做到口感适中,所以我们希望选取配料,以使得酸度和苦度的绝对差最小。

另外,我们必须添加至少一种配料,因为没有任何食物以水为配料的。

输入格式

第一行一个整数 n,表示可供选用的食材种类数。

接下来 n 行,每行 22 个整数 s_ib_i,表示第 ii 种食材的酸度和苦度。

输出格式

一行一个整数,表示可能的总酸度和总苦度的最小绝对差。

输入输出样例

输入 #1

1
3 10

 输出 #1

7

 输入 #2

2
3 8
5 8

输出 #2

1

输入 #3 

4
1 7
2 6
3 8
4 9

 输出 #3

1

说明/提示

数据规模与约定

对于 100% 的数据,有 1≤n≤10,且将所有可用食材全部使用产生的总酸度和总苦度小于 1\times 10^9 ,酸度和苦度不同时为 1 和 0。

说明

附件下载

🔗 ​​​​​​contest2_tasks.pdf101.88KB

----------------------------------------------------------分割线--------------------------------------------------------------

知识点

深度优先搜索(DFS)

解题思路

很常规的DFS,先定义一个名为food的类,存储酸度和苦度,在dfs函数中,从第k个食材开始搜索,并计算酸度和苦度差的绝对值,并用v[i]=1的方式标记该食材已搜索完成,在dfs函数退出后,进行回溯。

注意:在计算Min的时候,不宜使用vector存入每一个最小值,最后进行排序的方法,这样会导致栈溢出,在较大数据量的时候会出现MLE的情况。所以应当每计算一次,就更新一次最小值。

AC代码

#include<iostream>
#include<algorithm>
#include<cmath>
#include<vector>
#include<climits>
using namespace std;
long long n, mul = 1, add,Abs,v[20] ;
//vector<int>Min;(这种方法记录最小值会导致栈溢出)
long long Min = LLONG_MAX;
class food {
public:
    int sour;
    int bitter;
};
food f[12];
void dfs(int k) {
    if (k > n) {
        return;
    }
    for (int i = k; i <= n; i++) {
        if (v[i] == 0) {
            mul *= f[i].sour;
            add += f[i].bitter;
            Min = min(Min, abs(mul - add));
            v[i] = 1;
            dfs(k + 1);
            v[i] = 0;
            mul /= f[i].sour;
            add -= f[i].bitter;
        }
    }
}
int main() {
    cin >> n;
   
    for (int i = 1; i <= n; i++) {
        cin >> f[i].sour >> f[i].bitter;
    }
    dfs(1);//从第一个数(即为1)开始搜索可能的食材
    cout << Min;
    return 0;
}

题目描述: 有一家餐馆,它的特色菜是一种叫做“Perket”的菜肴。这道菜由N种不同的香料组成,每种香料都有一个正整数的苦味值和一个正整数的美味值。每道菜需要用到至少一种香料,而且每种香料只能用一次。每道菜的苦味值是所有用到的香料的苦味值的乘积,美味值是所有用到的香料的美味值的和。现在,你需要计算出所有菜肴中苦味值和美味值的差的绝对值的最小值。 输入格式: 第一行包含整数N。 接下来N行,每行包含两个整数,表示一种香料的苦味值和美味值。 输出格式: 输出一个整数,表示所有菜肴中苦味值和美味值的差的绝对值的最小值。 输入样例: 3 1 7 2 6 3 8 输出样例: 1 解题思路: 这道题目可以使用二进制枚举的方法来解决。 首先,我们可以将所有的香料的苦味值和美味值分别存储在两个数组中。 然后,我们可以使用二进制枚举的方法来枚举所有的菜肴。具体来说,我们可以使用一个二进制数来表示一道菜肴,其中第i位为1表示这道菜肴中使用了第i种香料,为表示没有使用。 对于每一道菜肴,我们可以计算出它的苦味值和美味值,并将它们分别存储在两个数组中。 最后,我们可以枚举所有的菜肴,计算它们的苦味值和美味值的差的绝对值,并找到其中的最小值。 时间复杂度: 枚举所有的菜肴需要O(2^N)的时间复杂度,计算每道菜肴的苦味值和美味值需要O(N)的时间复杂度,因此总时间复杂度为O(2^N*N)。 参考代码:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值