传送门:P2895 [USACO08FEB] Meteor Shower S
题目描述
贝茜听说一场特别的流星雨即将到来:这些流星会撞向地球,并摧毁它们所撞击的任何东西。她为自己的安全感到焦虑,发誓要找到一个安全的地方(一个永远不会被流星摧毁的地方)。
如果将牧场放入一个直角坐标系中,贝茜现在的位置是原点,并且,贝茜不能踏上一块被流星砸过的土地。
根据预报,一共有 M 颗流星 (1≤M≤50,000) 会坠落在农场上,其中第 i 颗流星会在时刻 Ti(0≤Ti≤1000)砸在坐标为 (Xi,Yi)(0≤Xi≤300,0≤Yi≤300) 的格子里。流星的力量会将它所在的格子,以及周围 4 个相邻的格子都化为焦土,当然贝茜也无法再在这些格子上行走
贝茜在时刻 0 开始行动,她只能在会在横纵坐标 X,Y≥0 的区域中,平行于坐标轴行动,每 1 个时刻中,她能移动到相邻的(一般是 4 个)格子中的任意一个,当然目标格子要没有被烧焦才行。如果一个格子在时刻 t 被流星撞击或烧焦,那么贝茜只能在 t 之前的时刻在这个格子里出现。 贝茜一开始在 (0,0)。
请你计算一下,贝茜最少需要多少时间才能到达一个安全的格子。如果不可能到达输出 −1。
输入格式
共 M+1 行,第 1 行输入一个整数 M,接下来的 M 行每行输入三个整数分别为 Xi,Yi,Ti。
输出格式
贝茜到达安全地点所需的最短时间,如果不可能,则为 −1。
输入输出样例
输入 #1
4
0 0 2
2 1 2
1 1 2
0 3 5
输出 #1
5
----------------------------------------------------------分割线--------------------------------------------------------------
知识点
宽度优先搜索(BFS)
解题思路
首先初始化数组Time,准备用于记录流星落下的时间。每次输入流星落下的坐标和时间时,进行取最小值的操作,即为更新最早到达的时间。之后利用方向数组,更新周围四个格子被烧毁的最早时间。在bfs()函数中,先将(0,0,0)入队(即贝茜所在的起始点),在while循环中,如果所处格子在边界内,循环continue,如果在流星到达之前来到该格子并且没走过,入队,进行下一次循环。注意!!!:如果有一个单元格不会被烧焦(即永远安全),则此处的Time数组值为初始化时赋值的无限大,那么则返回到该点所需要的时间,退出循环。如果无法找到安全的点,则返回-1。
bfs()函数结束后,输出结果,即可完成该题
AC代码
#include<iostream>
#include<algorithm>
#include<iomanip>
#include<queue>
#include <cstring>
using namespace std;
struct position
{
int x, y, t;//x,y为坐标,t为时间
};
int M;
const int inf = 0x3f3f3f3f;
bool vis[305][305];
int Time[305][305];//流星到达时间
int X[4] = { 0,1,-1,0 };//方向数组
int Y[4] = { 1,0,0,-1 };
int x1, y1, t1;
int bfs() {
queue<position>q;
position q0 = { 0,0,0 };
q.push(q0);
vis[0][0] = true;
while (!q.empty()) {
position S = q.front();
q.pop();
int a = S.x;
int b = S.y;
for (int i = 0; i < 4; i++) {
position c;
c.x = a + X[i];
c.y = b + Y[i];
c.t = S.t + 1;
if (c.x < 0 || c.y < 0)
continue;//判断边界!
if (Time[c.x][c.y] == inf)
return c.t;
if (c.t < Time[c.x][c.y] && !vis[c.x][c.y]) {//在流星到达之前并且没走过
q.push(c);
vis[c.x][c.y] = true;
}
}
}
return -1;
}
int main() {
cin >> M;
memset(Time, 0x3f, sizeof(Time));
for (int i = 1; i <= M; i++) {
cin >> x1 >> y1 >> t1;
Time[x1][y1] = min(Time[x1][y1], t1);
for (int d = 0; d < 4; d++) {
int nx = x1 + X[d];
int ny = y1 + Y[d];
if (nx < 0 || ny < 0)
continue;
Time[nx][ny] = min(Time[nx][ny], t1);//一定要更新最早到达时间
}
}
cout << bfs() << endl;
return 0;
}