Convolutional Neural Networks for Sentence Classification阅读笔记及复现

本文介绍了Text-CNN模型的网络结构,包括Embedding Layer、Convolution Layer、Max-Pooling Layer和SoftMax分类层。重点讨论了卷积层如何捕获局部位置信息,并通过Max-Pooling处理可变长度输入。实验部分展示了在多个文本分类任务上的应用和效果,证明预训练词向量和适当微调的重要性。
摘要由CSDN通过智能技术生成


卷积神经网络相比于DNN和RNN有以下优点:

  1. 能捕获局部的位置信息
  2. 能够方便的将不定长的输入转换成定长输入接入到DNN网络中
  3. 相比于RNN模型计算复杂度低,在很多任务中取得不错的效果

TEXT-CNN

一篇比较老的论文了, 但是很经典, 在一些简单的分类任务上效果也还不错.

1. 网络结构

Embedding Layer

word embedding层, 没什么好说的

Convolution Layer

输入层通过卷积操作得到若干个Feature Map,卷积窗口的大小为 h×k ,其中 h 表示纵向词语的个数,而 k 表示word vector的维数。通过这样一个大型的卷积窗口,将得到若干个列数为1的Feature Map。

Max-Pooling Layer

接下来的池化层,文中用了一种称为Max-over-time Pooling的方法。这种方法就是简单地从之前一维的Feature Map中提出最大的值,文中解释最大值代表着最重要的信号。可以看出,这种Pooling方式可以解决可变长度的句子输入问题(因为不管Feature Map中有多少个值,只需要提取其中的最大值)。最终池化层的输出为各个Feature Map的最大值们,即一个一维的向量。

SoftMax分类Layer

池化层的一维向量的输出通过全连接的方式,连接一个Softmax层,Softmax层可根据任务的需要设置(通常反映着最终类别上的概率分布)。最终实现时,我们可以在倒数第二层的全连接部分上使用Dropout技术,这样做的好处是防止隐藏层单元自适应(或者对称),从而减轻过拟合的程度。

2. 参数与超参数

  • sequence_length
    CNN输入输出都是固定的,对句子做定长处理,超过的截断,不足的补0.
  • filter_size_list : 多个不同size的filter, 一般设置[2, ,3, 4]或者[3, 4, 5]
  • feature map: 100
  • batch_size: 50
  • dropout: 0.5
  • optimizer: Adadelta

3. 变种

模型结构有几个小的变种:

  • CNN-rand
    设计好 embedding_size 这个 Hyperparameter 后, 对不同单词的向量作随机初始化, 后续BP的时候作调整.
  • static
    pre-trained词向量固定,训练过程不再调整
  • non-static
    pretrained vectors + fine-tuning
  • multiple channel
    static与non-static搭两个通道

4. 实验

数据集

### 回答1: 卷积神经网络 (Convolutional Neural Networks, CNN) 是一种常用于文本分类的深度学习模型。它通过卷积和池化层来提取文本中的特征,并使用全连接层来进行分类。 CNN 的一个优点是能够处理变长的输入,并且不需要对文本进行预处理。 ### 回答2: 卷积神经网络是一种深度学习方法,用于对文本进行分类。在训练过程中,这种网络可以自动学习输入数据的特征表示。卷积神经网络中的卷积层可以识别输入中的局部模式,这些局部模式组合起来形成更高级别的特征,最终帮助分类器确定类别。对于文本分类问题,卷积神经网络的输入是文本的词嵌入向量,可以从先验知识中自动学习特征。 在一些文本分类任务中,卷积神经网络已经取得了很好的表现。文本分类任务通常被分为两种类型:二元分类和多分类。二元分类任务是指将数据分为两类,例如垃圾邮件和非垃圾邮件。多类分类任务是指将数据分为多类,例如新闻分类。在这两种任务中,卷积神经网络都能够进行有效的分类。 对于二元分类任务,卷积神经网络可以使用一个输出节点,并使用 sigmoid 激活函数将输入映射到 0 到 1 之间的概率。对于多分类任务,卷积神经网络可以使用多个输出节点,每个节点对应一个类别,并使用 softmax 激活函数将输入映射到 0 到 1 之间,并且所有输出节点的和为 1。 要训练卷积神经网络进行文本分类,需要对模型进行三个主要的训练步骤。首先,需要构建词嵌入矩阵,该矩阵将文本中的每个词都映射到一个向量。然后,需要将文本数据转换为卷积神经网络所需的格式。最后,需要对模型进行训练,并根据测试数据进行评估。 总之,卷积神经网络已经被证明是一种强大的工具,可以用于文本分类等任务。在处理文本数据时,卷积神经网络可以自动学习输入数据的特征表示,并使用这些特征来确定文本的类别。 ### 回答3: 卷积神经网络(CNN)是一种深度学习模型,它在图像识别、计算机视觉和自然语言处理中表现出色。最近几年,CNN 在句子分类中也获得了很大的成功。 CNN 句子分类模型的输入是一个序列,输出是类别标签。与传统的 RNN 模型不同之处在于,CNN 可以使每个神经元只能捕获一个固定大小的区域的特征,从而加快模型的训练和降低了模型的复杂度。 CNN 句子分类模型的基本架构包括词嵌入层、卷积层、池化层和全连接层。词嵌入层将输入的文本转化为向量表示。卷积层通过滑动窗口对输入的序列进行卷积操作,提取出局部特征。池化层在每个滑动窗口上提取出一个最大值或平均值,进一步降低维度。最后,全连接层将提取出的特征传递到输出层进行分类。 CNN 句子分类模型的优点在于它可以处理不定长的文本序列,并在仅有少量特征的情况下表现出色。但是,CNN 模型的缺点在于不善于处理长期依赖关系,例如情感分析中的Irony识别。为了解决这个问题,可以引入 RNN 或 Transformer 等模型。 总的来说,CNN 模型为句子分类问题提供了一个简单有效的解决方案。在实践中,需要根据具体的任务选择合适的模型结构和参数设置,才能取得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值