K-means numpy实现

本文详细介绍了K-means聚类算法的原理,并重点阐述了如何使用numpy进行高效实现,包括初始质心的选择、样例分类计算以及质心的重新计算。通过numpy矩阵运算提升算法效率,实现K-means流程的优化。
摘要由CSDN通过智能技术生成


之前面试遇到了要求手写K-means实现, 当时回答的不太好, 回来在网上搜了下, 发现这些代码虽然实现了功能, 但是没充分利用numpy矩阵的性质去优化, 所以在查了些资料后自己实现了一下.

K-means原理

原理网上一搜一大堆, 就不过多介绍了, 具体的流程如下:
在这里插入图片描述

numpy实现

K-means主要有三个过程:

  1. 初始质心点的选择
  2. 计算每个样例所属的类别
  3. 对每个类重新计算质心

下面, 我们逐个实现.

初始质心点的选择

这部分直接利用numpy的shuffle函数打乱数据, 然后选择前k个样本就可以了

def initialize_centroids(points, K):
	centroids = points.copy()
	np.random.shuffle(centroids)
	return centroids[:k]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值