BZOJ 3110 [ZJOI2013]K大数查询

39 篇文章 0 订阅
7 篇文章 0 订阅

题目在这里呀~

这题被卡常了qaq(ZJOI临近了我也不想在这种题上花太多时间…)
可以想到要用二分答案(只是以前做过一道类似的题啦
然后常规的,求出左子树的贡献,如果大于c,就往左子树找,否则往右子树找。
然后就是树套树了?
外层权值内层记区间和。
我没看懂他们说的标记永久化什么的,可听说是没负数的而且不会爆int??
然后就调了一个晚上,后来看评论发现…天呐要开longlong qwq!

于是改成longlong?
然后洛谷T一个点?可能常数写的太大了吧哎呀不管了啦!

//Suplex
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#define N 20000000+1000
#define ll long long
using namespace std;
int n,m,opt,a,b,c,cnt,p,l,r,root[N];
ll tag[N],sum[N];

int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}

struct segment{
    int l,r;
}t[N];

inline void pushdown(int rt,int l,int r)
{
    if(tag[rt] && l<r){
        if(!t[rt].l) t[rt].l=++cnt;
        if(!t[rt].r) t[rt].r=++cnt;
        int mid=(l+r)>>1;
        tag[t[rt].l]+=tag[rt];
        tag[t[rt].r]+=tag[rt];
        sum[t[rt].l]+=tag[rt]*(mid-l+1);
        sum[t[rt].r]+=tag[rt]*(r-mid);
    }
    tag[rt]=0;
}

inline void modify(int &rt,int l,int r,int x,int y)
{
    if(!rt) rt=++cnt;
    pushdown(rt,l,r);
    if(x<=l && r<=y){
        sum[rt]+=(r-l+1);
        tag[rt]++;
        return;
    }
    int mid=(l+r)>>1;
    if(y<=mid) modify(t[rt].l,l,mid,x,y);
    else if(x>mid) modify(t[rt].r,mid+1,r,x,y);
    else modify(t[rt].l,l,mid,x,mid),modify(t[rt].r,mid+1,r,mid+1,y);
    sum[rt]=sum[t[rt].l]+sum[t[rt].r];
}

inline ll query(int rt,int l,int r,int x,int y)
{
    if(!rt) return 0;
    pushdown(rt,l,r);
    if(x<=l && r<=y) return sum[rt];
    int mid=(l+r)>>1;
    if(y<=mid) return query(t[rt].l,l,mid,x,y);
    else if(x>mid) return query(t[rt].r,mid+1,r,x,y);
    else return query(t[rt].l,l,mid,x,mid)+query(t[rt].r,mid+1,r,mid+1,y);
}

void insert()
{
    p=1;l=1;r=n;
    while(l<r){
        int mid=(l+r)>>1;
        modify(root[p],1,n,a,b);
        if(c<=mid) r=mid,p=p+p;
        else l=mid+1,p=p+p+1;
    }
    modify(root[p],1,n,a,b);
}

int solve()
{
    p=1;l=1;r=n;
    while(l<r){
        int mid=(l+r)>>1;
        ll lsum=query(root[p+p],1,n,a,b);
        if(lsum>=c) r=mid,p=p+p;
        else l=mid+1,p=p+p+1,c-=lsum;
    }
    return r;
}

int main()
{
    n=read();m=read();
    while(m--){
        opt=read();a=read();b=read();c=read();
        if(opt==1){
            c=n-c+1;
            insert();
        }else printf("%d\n",n-solve()+1);
    }
    return 0;
}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值