深度学习之卷积基本知识

本文深入探讨了卷积神经网络的参数计算,解释了卷积核的大小与输入层数匹配的重要性。此外,介绍了感受野的计算公式及其指数级增长的特点。还讨论了平均池化与最大池化的应用场景,以及R-CNN、Fast-RCNN、Faster-RCNN的目标检测算法演进,强调了速度与精度的权衡。最后,概述了YOLO系列模型的改进,特别是YOLO v3如何通过多尺度预测和网络结构优化提升小目标检测性能。
摘要由CSDN通过智能技术生成

卷积相关

  • 卷积神经网络的参数计算

参考博客https://www.cnblogs.com/hejunlin1992/p/7624807.html

比如输入是一个32x32x3的图像,3表示RGB三通道,每个filter/kernel是5x5x3,一个卷积核产生一个feature map,下图中,有6个5x5x3的卷积核,故输出6个feature map(activation map),大小即为28x28x6。

  下图中,第二层到第三层,其中每个卷积核大小为5x5x6,这里的6就是28x28x6中的6,两者需要相同,即每个卷积核的“层数”需要与输入的“层数”一致。这是理解参数计算的关键。有几个卷积核,就输出几个feature map,下图中,与第二层作卷积的卷积核有10个,故输出的第三层有10个通道。

举例说明,某层输入为32x32x8,卷积核大小为5x5,总共有10个卷积核,做卷积的时候stride=1,pad=2,那么这一层总共含有多少参数?

每个卷积核含有的参数个数为:5*5*8 + 1 = 201,其中8既代表该层输入的通道数,也表示每个卷积核的层数,1是偏置bias,由于有10个卷积核,故总参数为201*10=2010。

  • 感受野计算公式

参考博客https://blog.csdn.net/xiaohu2022/article/details/80647180

为了计算CNN每一层的感受野,除了要知道特征图每个维度的特征数nn,还需要记录每一层的其他信息,这包括当前层的感受野大小rr,两个相邻特征的距离(跳跃的距离,如前面可视化所示)jj,和左上角特征(第一个特征)的中心坐标startstart。注意感受野(其实是特征图第一个特征的感受野)的中心坐标

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值