python画出二分类正负样本的PR曲线

正样本的PR曲线比较好画

import matplotlib.pyplot as plt
from sklearn.metrics import precision_recall_curve
metrics.precision_recall_curve(test_y, test_pred_prob, pos_label=None, sample_weight=None)



precision, recall, thresholds = precision_recall_curve(test_y, test_pred_prob)


#print(precision)
#print(recall)
#print(thresholds)
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.plot(recall,precision)
plt.grid()  # 生成网格

plt.figure("P-R Curve")

plt.show()

对于负样本,可以将正负样本的标签、概率值取1的相反数,即可:

import matplotlib.pyplot as plt
from sklearn.metrics import precision_recall_curve
metrics.precision_recall_curve(test_y, test_pred_prob, pos_label=None, sample_weight=None)


precision, recall, thresholds = precision_recall_curve(1-np.array(test_y), 1-np.array(test_pred_prob))


#print(precision)
#print(recall)
#print(thresholds)
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.grid()  # 生成网格

plt.plot(recall,precision)
plt.figure("P-R Curve")

plt.show()

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值