Graham's Scan法求解【 凸包 】问题

概念

凸包(Convex Hull)是一个计算几何(图形学)中的概念。用不严谨的话来讲,给定二维平面上的点集,凸包就是将最外层的点连接起来构成的凸多边型,它能包含点集中所有点的。严谨的定义和相关概念参见维基百科:凸包

这个算法是由数学大师葛立恒(Graham)发明的,他曾经是美国数学学会(AMS)主席、AT&T首席科学家以及国际杂技师协会(IJA)主席。(太汗了,这位大牛还会玩杂技~)

问题

给定平面上的二维点集,求解其凸包。

过程

1. 在所有点中选取y坐标最小的一点H,当作基点。如果存在多个点的y坐标都为最小值,则选取x坐标最小的一点。坐标相同的点应排除。然后按照其它各点p和基点构成的向量<H,p>与x轴的夹角进行排序,夹角由大至小进行顺时针扫描,反之则进行逆时针扫描。实现中无需求得夹角,只需根据向量的内积公式求出向量的模即可。以下图为例,基点为H,根据夹角由小至大排序后依次为H,K,C,D,L,F,G,E,I,B,A,J。下面进行逆时针扫描。

                                                                                                         

2. 线段<H, K>一定在凸包上,接着加入C。假设线段<K, C>也在凸包上,因为就H,K,C三点而言,它们的凸包就是由此三点所组成。但是接下来加入D时会发现,线段<K, D>才会在凸包上,所以将线段<K, C>排除,C点不可能是凸包。

3. 即当加入一点时,必须考虑到前面的线段是否会出现在凸包上。从基点开始,凸包上每条相临的线段的旋转方向应该一致,并与扫描的方向相反。如果发现新加的点使得新线段与上线段的旋转方向发生变化,则可判定上一点必然不在凸包上。实现时可用向量叉积进行判断,设新加入的点为pn + 1,上一点为pn,再上一点为pn - 1。顺时针扫描时,如果向量<pn - 1, pn>与<pn, pn + 1>的叉积为正(逆时针扫描判断是否为负),则将上一点删除。删除过程需要回溯,将之前所有叉积符号相反的点都删除,然后将新点加入凸包。

                                                                       

在上图中,加入K点时,由于线段<H,K>相对于<H,C>为顺时针旋转,所以C点不在凸包上,应该删除,保留K点。接着加入D点,由于线段<K, D>相对<H, K>为逆时针旋转,故D点保留。按照上述步骤进行扫描,直到点集中所有的点都遍例完成,即得到凸包。

复杂度

这个算法可以直接在原数据上进行运算,因此空间复杂度为O(1)。但如果将凸包的结果存储到另一数组中,则可能在代码级别进行优化。由于在扫描凸包前要进行排序,因此时间复杂度至少为快速排序的O(nlgn)。后面的扫描过程复杂度为O(n),因此整个算法的复杂度为O(nlgn)。

****************************************************************************************************************************************************************************************

以zoj1453为例http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=453

#include<iostream>    
#include<vector>    
#include<map>    
#include<stack>    
#include<algorithm>    
#include<queue>    
#include<list>    
#include<set>    
#include<string.h>    
#include<stdlib.h>    
#include<math.h>    
#include<stdio.h>    
#include<ctype.h>    
#include<iomanip>    
    
using namespace std;    
    
#define LL long long    
#define pi acos(-1)    
#define N 110    
#define INF 9999999999    
#define eps 1e-6    
   //***************注意:这是逆时针存顶点!***************//
struct point    
{    
    double x,y;    
};    
point p[N],cHull[N],p0,stck[N];    
    
int m;//凸包顶点数    
int n;//所有点数    
//(b,a)x(c,a)    
double cross(point a,point b,point c)    
{    
    return (b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x);    
}//<0则ac在ab的顺时针,需要顺时针拐    
    
double dis(point a,point b)    
{    
    return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));    
}    
//极角从小到大排序    
bool cmp(point a,point b)    
{    
    double t=cross(p0,a,b);    
    return t>0||(t==0 && dis(p0,a)<dis(p0,b));    
    //t>0即p0b在p0a的逆时针    
}    
void convexHull()    
{    
    int i,j,k;    
    m=0;    
    if(n<3)    
    {    
        for(i=0;i<n;i++)    
            stck[i]=p[i];    
        m=n;    
        return ;    
    }    
    for(k=0,i=0;i<n;i++)    
        if(p[i].y<p[k].y||(p[i].y==p[k].y && p[i].x<p[k].x) )    
            k=i;    
    p0=p[k];//基点    
    p[k]=p[0];    
    p[0]=p0;    
    sort(p+1,p+n,cmp);    
    stck[0]=p[0];    
    stck[1]=p[1];    
    int top=1;    
    for(i=2;i<n;i++)    
    {    
        while(top>1 && cross(stck[top-1],stck[top],p[i])<eps)    
            {    
                top--;    
            }    
        stck[++top]=p[i];    
    }    
/*也相当于
    i=2;
    while(i<n) 
    { 
        double k=cross(stck[top-1],stck[top],p[i]); 
        if(k<0 && top>1)top--; 
        else 
        { 
            stck[++top]=p[i++]; 
        } 
    } 
*/  
    m=top+1;    
}       
void solve()    
{    
    double ans=0.0;    
    int i;    
    for(i=0;i<m-1;i++)    
        ans+=dis(stck[i],stck[i+1]);    
    ans+=dis(stck[0],stck[m-1]);    
    printf("%.2f\n",ans);    
}    
int main()    
{    
    //freopen("a.txt","r",stdin);    
    while(scanf("%d",&n)&&n)    
    {    
        int i;    
        for(i=0;i<n;i++)    
            scanf("%lf%lf",&p[i].x,&p[i].y);    
        if(n==1)    
        {    
            printf("0.00\n");    
            continue;    
        }    
        if(n==2)    
        {    
            printf("%.2f\n",2*dis(p[0],p[1]));//2倍啊!!!!    
            continue;    
        }    
        convexHull();    
        solve();    
    }    
    return 0;    
}  

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值