摘要:本篇案例分析,将利用 GraphPad Prism 8 中常见的「四参数 Logistic 回归模型」,分析来自某项剂量反应试验的数据。该试验目标是预估在有无增强剂(booster)的条件下,跳蚤治疗的 EC50 值。其试验结果是 500 只跳蚤中被杀死的跳蚤数量。
课题:
-
剂量反应案例研究:四参数Logistic 模型(4PL)
研究目标:
-
确定并对比有无增强剂条件下的EC50值
关键词:
-
Graphpad Prism 统计分析 数据分析 医学作图 绘图软件
在试验开始之前,我们先来看看什么是四参数 Logistic 模型(4PL)。
四参数 Logistic 方程有如下两种形式:
1)一种是浓度 X 已经用以 10 为底的对数做了变换;
Model
Y=Bottom+(Top-Bottom)/(1+10^((LogEC50-X)*HillSlope))
2)一种是 X 没有变换过。对于任何一种方式,Prism 中的参数估计值、标准误和置信区间都是相同的;
Model
Y=Bottom + (X^Hillslope)*(Top-Bottom)/(X^HillSlope + EC50^HillSlope)
该模型中的四个参数包括:Top, Bottom, Hill Slope, EC50。
-
Top 是指最大响应。 在这项试验中,研究者认为高浓度时约为 400。这相当于杀死的 80% 的跳蚤。
-
Bottom 是指基线响应。 在浓度为零的情况下,研究者预测被杀死的跳蚤约为 0。
-
Hill Slope 是指曲线的坡度。 大于 1 的值表示呈陡坡,小于1的值表示呈缓坡。某些时候,它被设置为 1。
-
EC50 是指 Top 和 Bottom 之间引起反应的剂量。如果增强剂有效,「有增强剂」的 EC50 浓度应低于「无增强剂」的 EC50 浓度。