4.1 行列式

本文深入探讨了线性代数中的核心概念——行列式,详细解释了行列式的定义、计算方法及其在解决线性方程组、判断矩阵可逆性等方面的应用。通过实例解析,帮助读者理解行列式的性质和重要性,并提供了Python实现行列式计算的代码示例。
摘要由CSDN通过智能技术生成

import numpy as np
# 代码4-1
# 方法一:使用det函数求行列式
arr = np.array([[1, 1],[30, 20]])      # 创建分母的二维数组
arr1 = np.array([[80, 1],[2050, 20]])  # 创建分子的二维数组
arr2 = np.array([[1, 80],[30, 2050]])  # 创建分子的二维数组
# 求解行列式
D = np.linalg.det(arr)
D1 = np.linalg.det(arr1)
D2 = np.linalg.det(arr2)
print('方程组的解x1为:', D1 / D)
print('方程组的解x2为:', D2 / D)
方程组的解x1为: 44.99999999999996
方程组的解x2为: 35.000000000000014
# 方法二:使用solve函数解线性方程组
D = np.array([[1, 1],[30, 20]])  # 创建系数行列式
arr = np.array([80, 2050])
x = np.linalg.solve(D, arr)
print('方程组的解为:', x)
方程组的解为: [45. 35.]
# 代码4-2
arr = np.array([[4, 6, 8],[4, 6, 9],[5, 6, 8]])  # 创建三阶行列式
print('行列式的解为:', np.linalg.det(arr))
行列式的解为: 5.999999999999996
# 代码4-3
# 方法一:使用d
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值