在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1
Sample Output
2
1
wa
1.只用dfs(s+1),类似问有多少种组合,先将有第一个数的组合全数过,后面不用再考虑第一个数,否则死循环。
2.正确的回溯,回溯点为这一行不下棋,不回溯会少隔行的结果,如eg2:改为4 2。
3.用a数组标记每一列是否可以放棋。(s为行)。
4.下过的棋子数可以为全局变量。
5.不能在main里循环每一行,会少隔行的结果。
思路:dfs,类似枚举10选4有多少种组合的过程。
ac代码
# include <iostream>
# include <algorithm>
# include <cstring>
# include <cstdio>
using namespace std;
int ans=0,ci=0;
char in[10][10];
int n,k;
int a[10];
void dfs (int s)
{
if (ci==k)
{
ans++;
return;
}
if (s>n) return;
for (int i=1;i<=n;i++)
if (a[i]==0&&in[s][i]=='#')
{
//cout << s << ' ' << i << endl;
a[i]=1;
ci++;
dfs(s+1);
a[i]=0;
ci--;
}
dfs(s+1);
return ;
}
int main ()
{
while ((cin >> n >> k)&&(n!=-1||k!=-1))
{
memset (a,0,sizeof a);
memset (in,'.',sizeof (in));
ans=0;
for (int i=1; i<=n;i++)
for (int j=1;j<=n;j++)
cin >> in[i][j];
dfs(1);
cout << ans << endl;
}
return 0;
}
参考http://blog.csdn.net/u013486414/article/details/43878071###;
ps:忍住,不看题解。