解决什么问题
求两个多项式乘积或者卷积, 也就是将问题转化为多项式乘积
上述
A
(
x
)
×
B
(
x
)
A(x) \times B(x)
A(x)×B(x)就是求卷积, 直接求时间复杂度
O
(
n
2
)
O(n ^ 2)
O(n2),
F
F
T
FFT
FFT能优化为
O
(
n
log
n
)
O(n \log n)
O(nlogn)
多项式表示法转化为点表示法
性质: 任意一个 n n n次多项式 A ( x ) = a 0 + a 1 x + a 2 x 2 + . . . + a n x n A(x) = a_0 + a_1x + a_2x ^ 2 + ... + a_nx ^ n A(x)=a0+a1x+a2x2+...+anxn, 在函数图像上任意取 n + 1 n + 1 n+1个点, 唯一能确定一个 n n n次多项式
上图就是选取的
n
+
1
n + 1
n+1个点
上述就是范德蒙行列式, 结果等于
∏
1
≤
i
<
j
≤
n
+
1
(
x
i
−
x
j
)
\prod_{1 \le i < j \le n + 1} (x_i - x_j)
1≤i<j≤n+1∏(xi−xj)
系数矩阵是满秩的
F F T FFT FFT使用了 n + 1 n + 1 n+1个特殊点, 如果求点的乘积, 对应 y y y方向坐标相乘即可, 也就是 A ( x i ) B ( x i ) A(x_i)B(x_i) A(xi)B(xi), 非常方便, 因此目标就变为如何快速的将系数表示法转化为点表示法, 在点表示法计算完结果后, 再转化回系数表示法
复数的性质
取复数域上的单位根作为不同的点
复数
a
+
b
i
a + bi
a+bi,
a
a
a是实部,
b
b
b是虚部
复数的运算性质
- 两个复数相加 a + b i + c + d i = ( a + c ) + ( b + d ) i a + bi + c + di = (a + c) + (b + d)i a+bi+c+di=(a+c)+(b+d)i, 满足平行四边形
- 两个复数相乘 ( a + b i ) ( c + d i ) = ( a c − b d ) + ( a d − b c ) i (a + bi)(c + di) = (ac - bd) + (ad - bc)i (a+bi)(c+di)=(ac−bd)+(ad−bc)i, 相乘得到的复数的模长等于原来两个复数模长相乘, 新的辐角等与原来两个辐角相加
复数域上的单位根
等分成
n
n
n份, 取其中
k
k
k份,
ω
n
k
\omega _{n} ^ {k}
ωnk, 被称为
n
n
n次单位根, 一般来说将
n
n
n变为
2
2
2的整次幂方便运算
ω
n
i
×
ω
n
j
=
ω
n
i
+
j
\omega _{n} ^ {i} \times \omega _{n} ^ {j} = \omega _{n} ^ {i + j}
ωni×ωnj=ωni+j
具有上述五条性质
F F T FFT FFT正变换
将原多项式转化为点表示法
将原式的奇偶项分开, 使用换元法
x
=
x
2
x = x ^ 2
x=x2, 就有上述
A
1
(
x
)
A_1(x)
A1(x)和
A
2
(
x
)
A_2(x)
A2(x)两个多项式
也就推导出
A
(
x
)
=
A
1
(
x
2
)
+
x
A
2
(
x
2
)
A(x) = A_1(x ^ 2) + xA_2(x ^ 2)
A(x)=A1(x2)+xA2(x2)
对于
[
π
2
,
n
−
1
]
[\frac{\pi}{2} , n - 1]
[2π,n−1]的点, 减去
π
2
\frac{\pi}{2}
2π, 映射到
[
0
,
π
2
−
1
]
[0, \frac{\pi}{2} - 1]
[0,2π−1]
想要计算
[
0
,
n
−
1
]
[0, n - 1]
[0,n−1]区间内的
ω
\omega
ω值, 将区间分为左右两份, 第一个区间预处理
A
1
(
ω
n
2
k
)
A_1(\omega _{\frac{n}{2} } ^ {k})
A1(ω2nk), 第二个区间预处理
A
2
(
ω
n
2
k
)
A_2(\omega _{\frac{n}{2} } ^ {k})
A2(ω2nk), 然后就可以根据这两个值计算
本质是基于分治算法, 每一层时间复杂度 O ( n ) O(n) O(n), 最多递归 log n \log n logn层, 总的时间复杂度 O ( n log n ) O(n \log n) O(nlogn)
F F T FFT FFT逆变换
将点表示法快速的求出原来的多项式
假设已经有点集
(
ω
n
k
,
y
k
)
(\omega _{n} ^ {k}, y_k)
(ωnk,yk), 计算原多项式系数
系数如下
C
k
=
∑
i
=
0
n
−
1
y
i
(
ω
n
−
k
)
i
C_k = \sum _ {i = 0} ^ {n - 1} y_i(\omega _{n} ^ {-k}) ^ i
Ck=i=0∑n−1yi(ωn−k)i
A
k
=
C
k
n
A_k = \frac {C_k}{n}
Ak=nCk
将
C
k
C_k
Ck做上图变换, 求
C
k
C_k
Ck等价于再求一次
F
F
T
FFT
FFT
迭代实现
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N = 300010; // 定义数组的最大长度
const double PI = acos(-1); // 定义π的值
int n, m; // 两个多项式的最高次数
struct Complex {
double x, y; // 复数的实部和虚部
Complex operator+(const Complex &t) const // 复数加法
{
return {x + t.x, y + t.y};
}
Complex operator-(const Complex &t) const // 复数减法
{
return {x - t.x, y - t.y};
}
Complex operator*(const Complex &t) const // 复数乘法
{
return {x * t.x - y * t.y, x * t.y + y * t.x};
}
} a[N], b[N]; // 存储两个多项式的系数
int rev[N], bit, tot; // rev数组用于存储位逆序置换,bit是二进制位数,tot是总长度
// FFT函数,inv为1时是FFT,inv为-1时是逆FFT
void fft(Complex a[], int inv) {
// 位逆序置换
for (int i = 0; i < tot; i++)
if (i < rev[i])
swap(a[i], a[rev[i]]); // 将数组元素按照位逆序排列
// 迭代实现FFT
for (int mid = 1; mid < tot; mid <<= 1) // mid表示当前区间长度的一半
{
auto w1 = Complex({cos(PI / mid), inv * sin(PI / mid)}); // 单位根
for (int i = 0; i < tot; i += mid * 2) // 遍历每个区间
{
auto wk = Complex({1, 0}); // 初始旋转因子
for (int j = 0; j < mid; j++, wk = wk * w1) // 遍历区间内的每个元素
{
auto x = a[i + j], y = wk * a[i + j + mid]; // 蝶形操作
a[i + j] = x + y, a[i + j + mid] = x - y; // 更新结果
}
}
}
}
int main() {
scanf("%d%d", &n, &m); // 输入两个多项式的最高次数
for (int i = 0; i <= n; i++) scanf("%lf", &a[i].x); // 输入第一个多项式的系数
for (int i = 0; i <= m; i++) scanf("%lf", &b[i].x); // 输入第二个多项式的系数
// 计算tot和bit,tot是大于等于n+m+1的最小的2的幂次
while ((1 << bit) < n + m + 1) bit++;
tot = 1 << bit;
// 初始化rev数组,用于位逆序置换
for (int i = 0; i < tot; i++)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
// 对a和b进行FFT
fft(a, 1), fft(b, 1);
// 将a和b的FFT结果相乘
for (int i = 0; i < tot; i++) a[i] = a[i] * b[i];
// 对a进行逆FFT
fft(a, -1);
// 输出结果,即多项式乘积的系数
for (int i = 0; i <= n + m; i++)
printf("%d ", (int) (a[i].x / tot + 0.5));
return 0;
}