FFT快速傅里叶变换原理及实现代码

解决什么问题

求两个多项式乘积或者卷积, 也就是将问题转化为多项式乘积
在这里插入图片描述
上述 A ( x ) × B ( x ) A(x) \times B(x) A(x)×B(x)就是求卷积, 直接求时间复杂度 O ( n 2 ) O(n ^ 2) O(n2), F F T FFT FFT能优化为 O ( n log ⁡ n ) O(n \log n) O(nlogn)

多项式表示法转化为点表示法

性质: 任意一个 n n n次多项式 A ( x ) = a 0 + a 1 x + a 2 x 2 + . . . + a n x n A(x) = a_0 + a_1x + a_2x ^ 2 + ... + a_nx ^ n A(x)=a0+a1x+a2x2+...+anxn, 在函数图像上任意取 n + 1 n + 1 n+1个点, 唯一能确定一个 n n n次多项式

在这里插入图片描述
上图就是选取的 n + 1 n + 1 n+1个点

在这里插入图片描述
上述就是范德蒙行列式, 结果等于
∏ 1 ≤ i < j ≤ n + 1 ( x i − x j ) \prod_{1 \le i < j \le n + 1} (x_i - x_j) 1i<jn+1(xixj)
系数矩阵是满秩

在这里插入图片描述

F F T FFT FFT使用了 n + 1 n + 1 n+1个特殊点, 如果求点的乘积, 对应 y y y方向坐标相乘即可, 也就是 A ( x i ) B ( x i ) A(x_i)B(x_i) A(xi)B(xi), 非常方便, 因此目标就变为如何快速的将系数表示法转化为点表示法, 在点表示法计算完结果后, 再转化回系数表示法

复数的性质

取复数域上的单位根作为不同的点
复数 a + b i a + bi a+bi, a a a是实部, b b b是虚部

复数的运算性质
  • 两个复数相加 a + b i + c + d i = ( a + c ) + ( b + d ) i a + bi + c + di = (a + c) + (b + d)i a+bi+c+di=(a+c)+(b+d)i, 满足平行四边形
  • 两个复数相乘 ( a + b i ) ( c + d i ) = ( a c − b d ) + ( a d − b c ) i (a + bi)(c + di) = (ac - bd) + (ad - bc)i (a+bi)(c+di)=(acbd)+(adbc)i, 相乘得到的复数的模长等于原来两个复数模长相乘, 新的辐角等与原来两个辐角相加
复数域上的单位根

在这里插入图片描述
等分成 n n n份, 取其中 k k k份, ω n k \omega _{n} ^ {k} ωnk, 被称为 n n n次单位根, 一般来说将 n n n变为 2 2 2的整次幂方便运算

ω n i × ω n j = ω n i + j \omega _{n} ^ {i} \times \omega _{n} ^ {j} = \omega _{n} ^ {i + j} ωni×ωnj=ωni+j
在这里插入图片描述
具有上述五条性质

F F T FFT FFT正变换

将原多项式转化为点表示法
在这里插入图片描述
将原式的奇偶项分开, 使用换元法 x = x 2 x = x ^ 2 x=x2, 就有上述 A 1 ( x ) A_1(x) A1(x) A 2 ( x ) A_2(x) A2(x)两个多项式
也就推导出 A ( x ) = A 1 ( x 2 ) + x A 2 ( x 2 ) A(x) = A_1(x ^ 2) + xA_2(x ^ 2) A(x)=A1(x2)+xA2(x2)
在这里插入图片描述
对于 [ π 2 , n − 1 ] [\frac{\pi}{2} , n - 1] [2π,n1]的点, 减去 π 2 \frac{\pi}{2} 2π, 映射到 [ 0 , π 2 − 1 ] [0, \frac{\pi}{2} - 1] [0,2π1]

在这里插入图片描述
想要计算 [ 0 , n − 1 ] [0, n - 1] [0,n1]区间内的 ω \omega ω值, 将区间分为左右两份, 第一个区间预处理 A 1 ( ω n 2 k ) A_1(\omega _{\frac{n}{2} } ^ {k}) A1(ω2nk), 第二个区间预处理 A 2 ( ω n 2 k ) A_2(\omega _{\frac{n}{2} } ^ {k}) A2(ω2nk), 然后就可以根据这两个值计算

本质是基于分治算法, 每一层时间复杂度 O ( n ) O(n) O(n), 最多递归 log ⁡ n \log n logn层, 总的时间复杂度 O ( n log ⁡ n ) O(n \log n) O(nlogn)

F F T FFT FFT逆变换

将点表示法快速的求出原来的多项式
假设已经有点集 ( ω n k , y k ) (\omega _{n} ^ {k}, y_k) (ωnk,yk), 计算原多项式系数
在这里插入图片描述
系数如下

C k = ∑ i = 0 n − 1 y i ( ω n − k ) i C_k = \sum _ {i = 0} ^ {n - 1} y_i(\omega _{n} ^ {-k}) ^ i Ck=i=0n1yi(ωnk)i
A k = C k n A_k = \frac {C_k}{n} Ak=nCk

在这里插入图片描述
C k C_k Ck做上图变换, 求 C k C_k Ck等价于再求一次 F F T FFT FFT

迭代实现

在这里插入图片描述

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>

using namespace std;

const int N = 300010;  // 定义数组的最大长度
const double PI = acos(-1);  // 定义π的值

int n, m;  // 两个多项式的最高次数
struct Complex {
	double x, y;  // 复数的实部和虚部
	Complex operator+(const Complex &t) const  // 复数加法
	{
		return {x + t.x, y + t.y};

	}
	Complex operator-(const Complex &t) const  // 复数减法
	{
		return {x - t.x, y - t.y};
	}

	Complex operator*(const Complex &t) const  // 复数乘法
	{
		return {x * t.x - y * t.y, x * t.y + y * t.x};
	}
} a[N], b[N];  // 存储两个多项式的系数
int rev[N], bit, tot;  // rev数组用于存储位逆序置换,bit是二进制位数,tot是总长度

// FFT函数,inv为1时是FFT,inv为-1时是逆FFT
void fft(Complex a[], int inv) {
	// 位逆序置换
	for (int i = 0; i < tot; i++)
		if (i < rev[i])
			swap(a[i], a[rev[i]]);  // 将数组元素按照位逆序排列

	// 迭代实现FFT
	for (int mid = 1; mid < tot; mid <<= 1)  // mid表示当前区间长度的一半
	{
		auto w1 = Complex({cos(PI / mid), inv * sin(PI / mid)});  // 单位根
		for (int i = 0; i < tot; i += mid * 2)  // 遍历每个区间
		{
			auto wk = Complex({1, 0});  // 初始旋转因子
			for (int j = 0; j < mid; j++, wk = wk * w1)  // 遍历区间内的每个元素
			{
				auto x = a[i + j], y = wk * a[i + j + mid];  // 蝶形操作
				a[i + j] = x + y, a[i + j + mid] = x - y;  // 更新结果
			}
		}
	}
}

int main() {
	scanf("%d%d", &n, &m);  // 输入两个多项式的最高次数
	for (int i = 0; i <= n; i++) scanf("%lf", &a[i].x);  // 输入第一个多项式的系数
	for (int i = 0; i <= m; i++) scanf("%lf", &b[i].x);  // 输入第二个多项式的系数

	// 计算tot和bit,tot是大于等于n+m+1的最小的2的幂次
	while ((1 << bit) < n + m + 1) bit++;
	tot = 1 << bit;

	// 初始化rev数组,用于位逆序置换
	for (int i = 0; i < tot; i++)
		rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));

	// 对a和b进行FFT
	fft(a, 1), fft(b, 1);

	// 将a和b的FFT结果相乘
	for (int i = 0; i < tot; i++) a[i] = a[i] * b[i];

	// 对a进行逆FFT
	fft(a, -1);

	// 输出结果,即多项式乘积的系数
	for (int i = 0; i <= n + m; i++)
		printf("%d ", (int) (a[i].x / tot + 0.5));

	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值