信号处理之快速傅里叶变换(FFT)-通俗易懂

历史溯源

相信很多人知道傅里叶变换,但是很多人对傅里叶变换又是模棱两可,似是而非的状态。今天作者就花点时间把傅里叶变换的前世今生跟大家探讨清楚,让大家对傅里叶变换有个清晰的认识。
约瑟夫·傅里叶(1768年3月21日—1830年5月16日),法国数学家、物理学家,提出傅里叶级数,并将其应用于热传导理论与振动理论,傅里叶变换也以他命名。

欧拉公式

欧拉公式是复分析领域的公式,它将三角函数与复指数函数关联起来,因其提出者莱昂哈德·欧拉而得名。欧拉公式被评为是世界上最伟大的十个公式之一。对于任意的实数 ϕ \phi ϕ,都有:
e i ϕ = c o s ( ϕ ) + i ∗ s i n ( ϕ ) e^{i\phi} = cos(\phi ) + i*sin(\phi ) eiϕ=cos(ϕ)+isin(ϕ), 其中 e e e是自然对数的底数, i i i是虚数单位,而 cos 和 sin 则是余弦、正弦对应的三角函数,参数 ϕ \phi ϕ则以弧度为单位的角度。如下图,在复数空间中, e i ϕ e^{i\phi} eiϕ可表示圆中任意一点,进而通过实部和虚部的组合,可以与复平面中任意一点一一对应。这样,通过欧拉公式就可以用指数形式把复平面表示出来,本身,傅里叶级数变换到频域后就是复数形式表示,这样就用一个指数形式就统一起来了。在这里插入图片描述

傅里叶级数(FS)

(数学定义) 傅立叶级展开数:它指出任何周期连续的函数都可以用正弦函数和余弦函数构成的无穷级数来表示。这种级数之所以被称为傅立叶级数,是因为它是由傅里叶提出的。傅里叶选择正弦函数与余弦函数作为基函数,原因在于它们是正交的。
在代数中,我们用基底的线性组合可以表示任意的一组向量;在函数中,我们也可以用基底表示任意的函数。
在代数中,我们希望基底是正交的,方便我们寻找线性组合的系数,例如正交单位向量a = [1,0,0], b = [0,1,0], c = [0,0,1], 那么对于空间中中任意一个向量d = [4,2,1] = 4a + 2b + c 来表示;在函数分解中,我们也希望基底是正交的。傅里叶用三角函数做了基底,比如{sin t, cos t, sin 2t, cos 2t, sin 3t, … sin nt, cos nt}。可以证明这组三角函数基底是正交函数基底, 同理任意一个周期函数可以通过三角函数这组基底表示 例如: f(x) = a*sin t + b * cos t。
那么,何为内积何为正交呢? 两个平面向量正交的时候时垂直的,写成向量乘法就是 a ⃗ ⋅ b ⃗ = 0 \vec{a} \cdot \vec{b} = 0 a b =0。在学习了线性代数后,我们把它写成了 X 1 ˉ ∗ X 2 ˉ T = 0 \bar{X_{1}} * \bar{X_{2}}^{T} = 0 X1ˉX2ˉT=0。这里的向量可以是任意维数的,比如 ( X 1 , X 2 , X 3 . . . X n ) \left ( X_{1}, X_{2}, X_{3}...X_{n} \right ) (X1,X2,X3...Xn) 。上面的点乘被称为求取向量的内积,即对应元素的求积累加,正交就是内积为0。 那么,同理,一组正交函数基底的内积的正交性可以用积分形式表示: ∫ a b f 1 ( x ) ∗ f 2 ( x ) = 0 \int_{a}^{b} f_{1}(x) * f_{2}(x) = 0 abf1(x)f2(x)=0,两函数正交,可把它叫做内积积分为0。这里函数基底可以是任意维数的,比如: ( f 1 ( x ) , f 2 ( x ) , f 3 ( x ) . . . f n ( x ) ) \left ( f_{1}(x) , f_{2}(x), f_{3}(x)... f_{n}(x) \right ) (f1(x),f2(x),f3(x)...fn(x))
在代数中,向量在一个基底上的线性组合的系数可以用内积得到;在几何中,向量在一个基底上的线性组合的系数就是向量在该基底的投影,即内积就是投影。在函数中,我们用内积积分可以求得相应地系数,函数在一个基底上的系数也是在该基底上的投影。
例如: 向量 a ⃗ \vec{a} a 在 一组基底 ( X 1 , X 2 , X 3 . . . X n ) \left ( X_{1}, X_{2}, X_{3}...X_{n} \right ) (X1,X2,X3...Xn) 中的系数分别是 a ⃗ ∗ X 1 \vec{a} * X_{1} a X1 a ⃗ ∗ X 2 \vec{a} * X_{2} a X2 a ⃗ ∗ X 3 \vec{a} * X_{3} a X3 a ⃗ ∗ X n \vec{a} * X_{n} a Xn, 其中 a ⃗ ∗ X 1 = ∣ a ⃗ ∣ ∗ ∣ X 1 ∣ ∗ cos ⁡ ( Θ ) \vec{a} * X_{1} = \left | \vec{a} \right | * \left | X_{1}\right | * \cos (\Theta ) a X1=a X1cos(Θ),这就是投影。
同理,傅里叶级数展开的系数:对于任意函数 f ( x ) f(x) f(x), 在正弦基底 ( sin ⁡ ( 2 π T ) , sin ⁡ ( 4 π T ) , sin ⁡ ( 6 π T ) . . . sin ⁡ ( 2 n π T ) ) \left ( \sin(\frac{2\pi }{T}), \sin(\frac{4\pi }{T}), \sin(\frac{6\pi }{T})...\sin(\frac{2n\pi }{T}) \right ) (sin(T2π),sin(T4π),sin(T6π)...sin(T

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值