DFS+数学:Digital Square

本文介绍了一个算法挑战,旨在寻找满足特定条件的最小非负整数M,使得M的平方数的尾数等于给定的整数N。通过递归深度优先搜索的方法,实现了对所有可能的尾数进行遍历,最终找到符合条件的最小整数。

Digital Square

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 743    Accepted Submission(s): 139


Problem Description
Given an integer N,you should come up with the minimum nonnegative integer M.M meets the follow condition: M2%10x=N (x=0,1,2,3....)
 

Input
The first line has an integer T( T< = 1000), the number of test cases. For each case, each line contains one integer N(0<= N <=109), indicating the given number.
 

Output
For each case output the answer if it exists, otherwise print “None”.
 

Sample Input
3 3 21 25
 

Sample Output
None 11 5


#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>

using namespace std;

int n;
long long ans = 10000000000LL;

long long dfs(long long shi, long long now){
    if(shi > n)
        return 0;
    int sheng = n % shi;
    for(long long i = 0; i <= 9; i ++){
        long long a = i * shi + now;
        long long aa = a * a % (shi * 10);
        long long nn = n % (shi * 10);
        if(aa == nn){
            //printf("a=%I64d aa=%I64d shi=%I64d\n", a, aa, shi);
            if(aa == n){
                ans = min(ans, a);
            }
            else
                dfs(shi * 10, a);
        }
    }
    return 0;
}

int main(){
    int t;
    scanf("%d", &t);
    while(t --){
            ans = 10000000000LL;
        scanf("%d", &n);
        if(n == 0){
            printf("0\n");
            continue;
        }
        if(n == 1000000000){
            printf("None\n");
            continue;
        }
        dfs(1, 0);
        if(ans == 10000000000LL)
            printf("None\n");
        else
            printf("%I64d\n", ans);
    }
    return 0;
}


内容概要:本文围绕【卡尔曼滤波】具有梯度流的一类系统的扩散映射卡尔曼滤波器研究(Matlab代码实现)“具有梯度流的一类系统的扩散映射卡尔曼滤波器研究”展开,重点介绍了一种结合扩散映射与卡尔曼滤波的新型滤波方法,适用于存在模型不确定性或混沌特征的动态系统状态估计。该方法利用梯度流信息提升滤波性能,在可预测性较高的阶段对混沌系统具备一定的预测能力,并通过Matlab代码实现验证其有效性。文档还附带多个相关研究主题,涵盖故障诊断、路径规划、信号处理、无人机控制、电力系统优化等多个领域,展示了卡尔曼滤波及其他先进算法在工程实践中的广泛应用。; 适合人群:具备一定数学基础和编程能力,从事控制理论、信号处理、自动化、航空航天、机器人或相关工程领域的研究生、科研人员及工程师。; 使用场景及目标:①研究复杂动态系统(如混沌系统)的状态估计与预测问题;②提升在模型不准确或噪声干扰严重情况下的滤波精度;③结合Matlab仿真平台开展算法开发与验证,推动理论成果向实际应用转化; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,深入理解扩散映射与卡尔曼滤波的融合机制,同时可参考文中列举的多种应用场景拓展思路,注重算法原理与工程实现的结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值