leetcode 5. Longest Palindromic Substring(最长回文子串)

Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000.

Example 1:

Input: “babad”
Output: “bab”
Note: “aba” is also a valid answer.
Example 2:

Input: “cbbd”
Output: “bb”

给出一个字符串,输出其最长回文子串。
回文子串:左右对称的字符串

思路:
单个字符是回文子串。
以单个字符 s(i) 为中心,如果它的左右对称,即s(i-1) == s(i+1), 那么以 i 为中心,左右扩充一个字符的子串仍然是回文子串,这样扩充就可以得到以 i 为中心的最长回文子串。
那么取s的每个字符为中心都找一遍,就可得到最长回文子串。时间复杂度为O(n2)。
长度为偶数时需要取中心的两个字符,遍历s时两个一对为中心。

    public String longestPalindrome(String s) {
        if(s == null || s.length() == 0) {
            return "";
        }
        
        int start = 0;
        int len = 0;
        int n = s.length();
        for(int i = 0; i < n; i++) {
            int tmp = Math.max(getLen(s, i, i, n), getLen(s, i, i+1, n));
            if(tmp > len) {
                len = tmp;
               //start是左边的起始点,不是中心点, 先算len再算start
                start = i - (len - 1)/2;     
            }
        }
        
        return s.substring(start, start + len);
        
    }
    
    public int getLen(String s, int l, int r, int n) {
        while(l >= 0 && r < n && s.charAt(l) == s.charAt(r)) {
            l --;
            r ++;
        }
        //不满足条件结束循环时,l和r已经在子串外面,所以用以l,r为边界的字符串长度-2
        return (r - l -1);
    }
    

线型复杂度O(n)的Manacher’s Algorithm
具体思路后面补充,代码如下

    public String longestPalindrome(String s) {
        int id = 0;
	   int mx = 0;
	   int maxP = 0;
	   int maxId = 0;
	   int[] p = new int[s.length()*2 + 1];
       char[] str_insert = new char[s.length()*2 + 1];
       str_insert[0] = '#';
       for(int i = 0; i < str_insert.length-1; i ++){
    	   if(i % 2 == 0) {
    		   str_insert[i+1] = s.charAt(i/2);
    	   } else {
    		   str_insert[i+1] = '#';
    	   }
       }
       p[0] = 1;
       for(int i = 1; i < str_insert.length; i++){
    	   if(mx > i){
    		   p[i] = Math.min(p[2*id-i], mx-i);
    	   } else {
    		   p[i] = 1;
    	   }
    	   while(true){
    		   if(i+p[i] > str_insert.length-1 || i-p[i] < 0) {
    			   break;
    		   }
    		   if(str_insert[i + p[i]] == str_insert[i-p[i]]){
    			   p[i] ++;
    		   } else {
    			   break;
    		   }
    	   }
    	   if(p[i] > maxP) {
    		   maxP = p[i];
    		   maxId = i;
    	   }
    	   mx = i + p[i] - 1;
    	   id = i;
       }
       String string = new String(str_insert);
     //  System.out.println(Arrays.toString(p));
     //  System.out.println("maxId = " + maxId + ", maxP = " + maxP);
       StringBuilder result = new StringBuilder();
       for(int i = maxId - maxP + 1; i < maxId + maxP; i++){
    	   if(str_insert[i] != '#'){
    		   result.append(str_insert[i]);
    	   }
       }
	   return result.toString();
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝羽飞鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值