Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000.
Example 1:
Input: “babad”
Output: “bab”
Note: “aba” is also a valid answer.
Example 2:
Input: “cbbd”
Output: “bb”
给出一个字符串,输出其最长回文子串。
回文子串:左右对称的字符串
思路:
单个字符是回文子串。
以单个字符 s(i) 为中心,如果它的左右对称,即s(i-1) == s(i+1), 那么以 i 为中心,左右扩充一个字符的子串仍然是回文子串,这样扩充就可以得到以 i 为中心的最长回文子串。
那么取s的每个字符为中心都找一遍,就可得到最长回文子串。时间复杂度为O(n2)。
长度为偶数时需要取中心的两个字符,遍历s时两个一对为中心。
public String longestPalindrome(String s) {
if(s == null || s.length() == 0) {
return "";
}
int start = 0;
int len = 0;
int n = s.length();
for(int i = 0; i < n; i++) {
int tmp = Math.max(getLen(s, i, i, n), getLen(s, i, i+1, n));
if(tmp > len) {
len = tmp;
//start是左边的起始点,不是中心点, 先算len再算start
start = i - (len - 1)/2;
}
}
return s.substring(start, start + len);
}
public int getLen(String s, int l, int r, int n) {
while(l >= 0 && r < n && s.charAt(l) == s.charAt(r)) {
l --;
r ++;
}
//不满足条件结束循环时,l和r已经在子串外面,所以用以l,r为边界的字符串长度-2
return (r - l -1);
}
线型复杂度O(n)的Manacher’s Algorithm
具体思路后面补充,代码如下
public String longestPalindrome(String s) {
int id = 0;
int mx = 0;
int maxP = 0;
int maxId = 0;
int[] p = new int[s.length()*2 + 1];
char[] str_insert = new char[s.length()*2 + 1];
str_insert[0] = '#';
for(int i = 0; i < str_insert.length-1; i ++){
if(i % 2 == 0) {
str_insert[i+1] = s.charAt(i/2);
} else {
str_insert[i+1] = '#';
}
}
p[0] = 1;
for(int i = 1; i < str_insert.length; i++){
if(mx > i){
p[i] = Math.min(p[2*id-i], mx-i);
} else {
p[i] = 1;
}
while(true){
if(i+p[i] > str_insert.length-1 || i-p[i] < 0) {
break;
}
if(str_insert[i + p[i]] == str_insert[i-p[i]]){
p[i] ++;
} else {
break;
}
}
if(p[i] > maxP) {
maxP = p[i];
maxId = i;
}
mx = i + p[i] - 1;
id = i;
}
String string = new String(str_insert);
// System.out.println(Arrays.toString(p));
// System.out.println("maxId = " + maxId + ", maxP = " + maxP);
StringBuilder result = new StringBuilder();
for(int i = maxId - maxP + 1; i < maxId + maxP; i++){
if(str_insert[i] != '#'){
result.append(str_insert[i]);
}
}
return result.toString();
}