machine learning
蓝羽飞鸟
GO
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
详解HMM模型原理 及 实现(之四:matlab实现曲线分类)
本文详解paper “A Tutorial on HMMs and Selected Applications in Speech Recognition"并进行matlab实现(尽量用其他编程语言通用的实现) **为方便代码,注释部分用python的”#" 实现HMM模型用于简单的曲线分类 先定义HMM变量 曲线在T个时刻取值 observation定义为曲线可以取的值,这里先把曲线做归一化,然后从0到1之间以0.1为间隔切为10个区间,依次标号1到10,那么observation就有10个,为1到10的原创 2020-08-06 22:56:56 · 2683 阅读 · 0 评论 -
详解HMM模型 及 实现(之三:problem3)
本文详解paper "A Tutorial on HMMs and Selected Applications in Speech Recognition"并进行matlab实现(尽量用其他编程语言通用的实现) Problem 3 调整参数使在模型下观测序列概率最大 目前没有方法分析是观测序列概率最大的方法,只有迭代法逐步逼近局部最大值, 如Baum-Welch法,即EM 迭代更新HMM模型中的变量 t时刻在state Si, t+1时刻在Sj, 给出model和观测序列O下的概率 代入前面的forwa原创 2020-08-06 22:12:48 · 362 阅读 · 0 评论 -
详解HMM模型 及 实现(之二:problem2)
本文详解paper "A Tutorial on HMMs and Selected Applications in Speech Recognition"并进行matlab实现(尽量用其他编程语言通用的实现,不实现problem2) Problem 2 给出observation序列,模型lambda=(A,B,pi), 选择state序列Q=q1q2…qT 即探索隐性状态 问题在于如何定义最佳state,即最佳的标准 定义变量 即给出模型和观测序列,估计出t时刻state为Si的概率 用problem原创 2020-08-06 17:03:07 · 381 阅读 · 0 评论 -
详解HMM模型 及 实现(之一:problem1)
本文详解paper "A Tutorial on HMMs and Selected Applications in Speech Recognition"并进行matlab实现(尽量用其他编程语言通用的实现) 举个简单的HMM例子 天气: 状态转移矩阵A size:state*state: 问接下来的7天天气依次是”sun sun rain rain…”的概率,也就是说observation O = {S3, S3, S3, S1, S1, S3, S2, S3}的概率,对应时间t=1~8 给定mod原创 2020-08-06 16:51:27 · 651 阅读 · 0 评论 -
catboost测试,ROC
用小数据集测试catboost,并画出ROC曲线 数据集用CSV 首先import需要的库 import pandas as pd import numpy as np from catboost import CatBoostClassifier,CatBoostRegressor,Pool from sklearn.metrics import roc_curve, auc import matplotlib.pyplot as plt pandas读入csv 去掉标题的第一行 obj=pd.r原创 2020-07-28 14:43:45 · 1200 阅读 · 1 评论
分享