给出一个字符串s,找出它的最长回文子串,子串可以不连续,但必须保持在s中的顺序。
思路:
二维DP
这是最容易理解的方法,能beat 97.23%, 首选该方法。
定义dp[i][j]表示s的下标i到j部分子串中最长回文子串的长度
如果i == j,子串长度为1,最长回文子串长度也是1,dp[i][j] = 1
i 不等于j时,要看s[i] 是否等于s[j],如果相等,那么i到j部分最长回文子串的长度就等于 i+1~j-1部分最长回文子串长度+2
即dp[i][j] = dp[i+1][j-1] + 2
如果s[i], s[j]不相等, dp[i][j] 取dp[i][j-1] 和 dp[i+1][j]中较大的一个
public int longestPalindromeSubseq(String s) {
int n = s.length();
char[] chs = s.toCharArray(); //转成charArray比s.charAt(i)要快!
int[][] dp = new int[n][n];
for(int i = 0; i < n; i++) dp[i][i] = 1;
for(int j = 1; j < n; j++) {
for(int i = j-1; i >= 0; i--) {
if(chs[i] == chs[j]) dp[i][j] = dp[i+1][j-1]+2;
else dp[i][j] = Math.max(dp[i][j-1], dp[i+1][j]);
}
}
return dp[0][n-1];
}
一维DP
比较不容易理解。
定义dp[ i ]为 i ~ j 的最长回文子串长度。
当 s[ i ] == s[ j ]时,dp[i] = i+1 ~ j-1范围内最长回文子串长度 + 2,
那么需要一个变量max用来记录i+1 ~ j-1范围内最长回文子串长度,
每到一个j , max初始化为0,然后在遍历 i = j-1 ~ 0的过程中不断更新max.
尤其else部分比较难理解,相当于上面方法的else dp[i][j] = Math.max(dp[i][j-1], dp[i+1][j])
public int longestPalindromeSubseq(String s) {
int n = s.length();
char[] chs = s.toCharArray();
int[] dp = new int[n]; //i~n最长回文子串长度
int max = 0; //记录 i+1 ~ j-1 范围内最长回文子串的长度
for(int j = 0; j < n; j++) {
dp[j] = 1;
max = 0;
for(int i = j-1; i >= 0; i--) {
int len = dp[i]; //当前 i~j-1 范围内最长回文子串的长度
if(chs[i] == chs[j]) dp[i] = max + 2; //i~j范围最长回文子串的长度
//这一步比较不容易理解,因为s[i] != s[j],所以dp[i]这时候仍然相当于i~j-1的回文子串长度
//而dp[i+1]上一步已经更新过,是i+1 ~ j的回文子串长度
else dp[i] = Math.max(dp[i], dp[i+1]); //i~j-1, i+1~j的最长回文子串长度
max = Math.max(max, len); //i~j-1在下一时刻就相当于i+1~j-1范围
}
}
return dp[0];
}