leetcode 516. Longest Palindromic Subsequence(最长回文子序列)

在这里插入图片描述

给出一个字符串s,找出它的最长回文子串,子串可以不连续,但必须保持在s中的顺序。

思路:

二维DP
这是最容易理解的方法,能beat 97.23%, 首选该方法。

定义dp[i][j]表示s的下标i到j部分子串中最长回文子串的长度
如果i == j,子串长度为1,最长回文子串长度也是1,dp[i][j] = 1
i 不等于j时,要看s[i] 是否等于s[j],如果相等,那么i到j部分最长回文子串的长度就等于 i+1~j-1部分最长回文子串长度+2
即dp[i][j] = dp[i+1][j-1] + 2
如果s[i], s[j]不相等, dp[i][j] 取dp[i][j-1] 和 dp[i+1][j]中较大的一个

    public int longestPalindromeSubseq(String s) {
        int n = s.length();
        char[] chs = s.toCharArray(); //转成charArray比s.charAt(i)要快!
        int[][] dp = new int[n][n];

        for(int i = 0; i < n; i++) dp[i][i] = 1;

        for(int j = 1; j < n; j++) {
            for(int i = j-1; i >= 0; i--) {
                if(chs[i] == chs[j]) dp[i][j] = dp[i+1][j-1]+2;
                else dp[i][j] = Math.max(dp[i][j-1], dp[i+1][j]);
            }
        }
        return dp[0][n-1];
    }

一维DP
比较不容易理解。
定义dp[ i ]为 i ~ j 的最长回文子串长度。
当 s[ i ] == s[ j ]时,dp[i] = i+1 ~ j-1范围内最长回文子串长度 + 2,
那么需要一个变量max用来记录i+1 ~ j-1范围内最长回文子串长度,
每到一个j , max初始化为0,然后在遍历 i = j-1 ~ 0的过程中不断更新max.

尤其else部分比较难理解,相当于上面方法的else dp[i][j] = Math.max(dp[i][j-1], dp[i+1][j])

    public int longestPalindromeSubseq(String s) {
        int n = s.length();
        char[] chs = s.toCharArray();
        int[] dp = new int[n];  //i~n最长回文子串长度
        int max = 0; //记录 i+1 ~ j-1 范围内最长回文子串的长度

        for(int j = 0; j < n; j++) {
            dp[j] = 1;
            max = 0; 
            for(int i = j-1; i >= 0; i--) {
                int len = dp[i];  //当前 i~j-1 范围内最长回文子串的长度
                if(chs[i] == chs[j]) dp[i] = max + 2; //i~j范围最长回文子串的长度

                //这一步比较不容易理解,因为s[i] != s[j],所以dp[i]这时候仍然相当于i~j-1的回文子串长度
                //而dp[i+1]上一步已经更新过,是i+1 ~ j的回文子串长度
                else dp[i] = Math.max(dp[i], dp[i+1]); //i~j-1, i+1~j的最长回文子串长度
                max = Math.max(max, len); //i~j-1在下一时刻就相当于i+1~j-1范围
            }
        }
       
        return dp[0];
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝羽飞鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值