Matrix Power Series

Matrix Power Series

题意:给出n*n的矩阵A,求和A + A2 + A3 + … + Ak

思路:矩阵快速幂,由于k的大小,如果直接快速幂会爆,所以需要通过二分缩小计算规模

代码:

#include <iostream>

#include <vector>

#define V vector<vector<int>>

using namespace std;

int m;

V mul(const V& A, const V& B) {

    int n = A.size();

    V result(n, vector<int>(n, 0));

    for (int i = 0; i < n; ++i)

        for (int j = 0; j < n; ++j)

            for (int k = 0; k < n; ++k)

                result[i][j] = (result[i][j] + A[i][k] * B[k][j]) % m;

    return result;

}

V pw(const V& A, int k) {

    int n = A.size();

    V result(n, vector<int>(n, 0));

    for (int i = 0; i < n; ++i)

        result[i][i] = 1;

    V base = A;

    while (k) {

        if (k & 1) result = mul(result, base);

        base = mul(base, base);

        k >>= 1;

    }

    return result;

}

V add(const V& A, const V& B){

    int n = A.size();

    V C(n, vector<int>(n, 0));

    for(int i = 0; i < n; ++i)

        for(int j = 0; j < n; ++j)

            C[i][j] = (A[i][j] + B[i][j]) % m;

    return C;

}

V solve(const V& A, int k){

    if(k==1) return A;

    V res=solve(A, k/2);

    if(k&1){

        V tmp=pw(A,k/2+1);

        res=add(res,mul(tmp,res));

        res=add(res,tmp);

    }

    else{

        V tmp=pw(A,k/2);

        res=add(res,mul(tmp,res));

    }

    return res;

}

int main() {

    int n, k;

    cin >> n >> k >> m;

    V A(n, vector<int>(n));

    for (int i = 0; i < n; ++i)

        for (int j = 0; j < n; ++j)

            cin >> A[i][j];

    V ans=solve(A, k);

    for (int i = 0; i < n; ++i) {

        for (int j = 0; j < n; ++j){

            if(j) cout << ' ';

            cout << ans[i][j];

        }

        cout << '\n';

    }

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值