推荐系统的经典算法非常多,从早期的浅层学习算法协同过滤,到矩阵分解和线性模型,再到后面的深度学习和序列推荐,每一个发展时期都见证了某几个里程碑算法赢家通吃的现象。推荐系统的技术这么成熟,还会有什么我们平常不留心的知识吗?你别说,还真有。不信请看本文:
推荐系统自1992 年代诞生以来, 到2024 年的今天已经有32 年的发展历程。在这几十年的发展历程中,各个互联网和科技公司上线过数以百万计的推荐系统模型。尽管推荐系统经历过 2012 到 2014 年的发展低潮,但很快就被后起之秀快手和字节跳动一改颓势,从而重新成为了热点技术。在经历过浅层学习和深度学习之后,推荐系统的研究方向目前在往多元化方向发展,包括公平性和序列推荐等等。
推荐系统的经典算法非常多,从早期