xmu 1293. pets

本文介绍了一个基于Ford-Fulkerson算法的最大流问题实现方案,通过BFS寻找增广路径并不断更新流量矩阵,最终求得从源点到汇点的最大流量。代码中详细展示了如何初始化网络、设置边的容量及流量,以及如何通过迭代来逐步增加流量直至达到最大值。
摘要由CSDN通过智能技术生成
#include <iostream>
#include <queue>
#include <string.h>
#include <stdio.h>
#define N 225
#define MaxInt 20000000
using namespace std;
int flow[N][N],cap[N][N],a[N],p[N];
queue<int> q;


int MaxFlow(int s,int t,int n1)
{
    int f,u,v;
    memset(flow,0,sizeof(flow));
    f=0;
    while(1)
    {
        memset(a,0,sizeof(a));
        a[s]=MaxInt;
        q.push(s);
        //BFS找增广路
        while(!q.empty())
        {
            u=q.front();q.pop();
            for(v=1;v<=n1;v++)
            {
                if(!a[v]&&cap[u][v]>flow[u][v])//找到新结点v
                {
                    p[v]=u;q.push(v);//记录v的父亲,并加入FIFO队列
                    a[v]=a[u]<cap[u][v]-flow[u][v]?a[u]:cap[u][v]-flow[u][v];//a[v]为s-v路径上的最小流量
                }
            }
        }
        if(a[t]==0) break;//找不到,则当前已是最大流量
        for(v=t;v!=s;v=p[v])//从汇点往回走
        {
            flow[p[v]][v]+=a[t];//更新正向流量
            flow[v][p[v]]-=a[t];//更新反向流量
        }
        f+=a[t];//更新从s流出的总流量
    }
    return f;
}




int main()
{
    int n,m,i,j,temp,e,tp1,tp2,max,temp1,Flow,k=1;
    int array[250];
    scanf("%d",&temp);
    temp1=temp;
    while(temp)
    {
        scanf("%d%d%d",&n,&m,&e);
        if((n==0)||(m==0))
        {//m或n等于0的情况
            array[k++]=0;
            temp--;
            continue;
        }
        memset(cap,0,sizeof(cap));
        for(i=2;i<=n+1;++i)
        {
            cap[1][i]=1;
            cap[i][1]=1;
        }
        for(i=n+2;i<=n+m+1;++i)
        {
            cap[n+m+2][i]=1;
            cap[i][n+m+2]=1;
        }
        for(i=2;i<=n+1;++i)
        {
            for(j=n+2;j<=m+n+1;++j)
            {
                cap[i][j]=1;
                cap[j][i]=1;
            }
        }
        for(i=1;i<=e;++i)
        {
            scanf("%d %d",&tp1,&tp2);
            cap[tp1+1][tp2+n+1]=0;//不感兴趣赋值0
            cap[tp2+n+1][tp1+1]=0;
        }
        max=n+m+2;//结束点,起始点1
        Flow=MaxFlow(1,max,max);
        array[k++]=Flow;
        temp--;
    }//while
        for(i=1;i<=temp1;++i)
        {
            printf("Case %d: %d\n",i,array[i]);
        }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值