
深度学习基础
文章平均质量分 96
深度学习的基础知识
mubei-123
这个作者很懒,什么都没留下…
展开
-
各类注意力机制详解
注意力机制是一种在神经网络的设计中被广泛使用的技术。在认知科学中,当信息输入规模超过大脑的处理能力时,人类倾向于有选择地将注意力集中于感兴趣的信息,并忽略其他信息。本文将详细介绍并梳理目前存在的各类注意力机制的原理,方便按需使用。原创 2025-04-21 23:34:46 · 1346 阅读 · 0 评论 -
Vision Transformer(ViT)原理详解 + 代码注释
ViT(Vision Transformer)是Google在2020年提出的直接将Transformer应用在图像分类的模型,它证明了Transformer在视觉任务中的潜力。ViT通过将图像分割成若干固定大小的图块,并将每个图块视为一个序列输入到Transformer中进行处理。与传统的卷积神经网络不同,ViT摆脱了卷积操作,完全依赖自注意力机制来捕捉图像中的长距离依赖关系。原创 2025-01-14 16:08:05 · 258 阅读 · 0 评论 -
Swin Transformer(Swin-T)原理详解 + 代码注释
本文介绍了一种名为 Swin Transformer 的新视觉 Transformer,由 Microsoft 研究团队于2021年提出,旨在解决传统 Transformer 模型在计算机视觉任务中的高计算复杂度问题。它基于ViT模型的思想,创新性的引入了分层架构和滑动窗口机制,让模型能够学习到跨窗口的信息,广泛应用于图像分类、目标检测、分割等视觉任务,已成为新一代的CV通用骨干。原创 2025-02-10 20:16:42 · 1704 阅读 · 0 评论 -
Transformer原理讲解
Transformer是谷歌2017年发表的论文《Attention Is All You Need》中提出的,用于NLP的各项任务,其引入了自注意力机制(self-attention mechanism),具有长距离依赖关系建模、并行计算能力和通用性能优点,已广泛应用于系列数据的处理。在本文中,我们将从Transformer的整体框架、Encoder结构和输入输出、Decoder的结构和输入输出等方面,详细讲解Transformer的原理。原创 2025-01-09 17:31:43 · 1324 阅读 · 0 评论