极大似然估计法
如果总体X为离散型
假设分布率为P=p(x;θ)P=p(x;θ),x是发生的样本,θθ是代估计的参数,p(x;θ)p(x;θ)表示估计参数为θθ时,发生x的的概率。
那么当我们的样本值为:x1,x2,...,xnx1,x2,...,xn时,
L(θ)=L(x1,x2,...,xn;θ)=∏i=1np(xi;θ)L(θ)=L(x1,x2,...,xn;θ)=∏i=1np(xi;θ)
其中 L(θ)L(θ)成为样本的似然函数。
假设
L(x1,x2,...,xn;θ^)=maxθ∈ΘL(x1,x2,...,xn;θ)L(x1,x2,...,xn;θ^)=maxθ∈ΘL(x1,x2,...,xn;θ)
有 θ^θ^ 使得 L(θ)L(θ) 的取值最大,那么 θ^θ^就叫做参数 θθ 的极大似然估计值。
如果总体X为连续型
基本和上面类似,只是概率密度为f(x;θ)f(x;θ),替代p。
解法
- 构造似然函数L(θ)L(θ)
- 取对数:lnL(θ)lnL(θ)
- 求导,计算极值
- 解方程,得到θθ
解释一下,其他的步骤很好理解,第二步取对数是为什么呢?
因为根据前面你的似然函数公式,是一堆的数字相乘,这种算法求导会非常麻烦,而取对数是一种很方便的手段:
- 由于ln对数属于单调递增函数,因此不会改变极值点
- 由于对数的计算法则:lnab=blnalnab=blna、lnab=lna+lnblnab=lna+lnb ,求导就很方便了
例子这里就不举了,感兴趣的话,可以看看参考的第二篇里面有好几个求解极大似然估计的例子。