极大似然估计_极大似然估计法的理解指南

本文介绍了极大似然估计法的基本概念、求解步骤和实际应用,通过实例解析了如何利用极大似然估计求解问题,并探讨了在K-近邻算法中的应用。文章适合对机器学习感兴趣的读者,特别是对概率论有一定基础的学习者。
摘要由CSDN通过智能技术生成

今天讲一个在机器学习中重要的方法——极大似然估计。

这是一个,能够让你拥有拟合最大盈利函数模型的估计方法。

01

什么是极大似然估计法

极大似然估计是 1821 年由高斯提出,1912 年由费希尔完善的一种点估计方法。

通俗来说,极大似然估计法其实源自生活的点点滴滴,比方说有一个大学生他天天上课不听讲,天天上课玩手机,老师盯着他看了老半天,他也不知道收敛一些,那通过老师几十年的教学经验的判断,这小子期末一定是挂科的,果不其然,他真的挂科了。

老师以过去大量的相同事件来判断目前正在发生的类似事件,这就是极大似然。

其实一开始写这个分享,我准备了很多小故事,希望用风趣幽默的文法把一个很抽象的数学名词尽可能的讲给所有人听,让大家都能理解并接受。后来我发现,用上面老师和学生的例子是最为贴切的,因为也曾经这样预判过别人。

好啦,故事讲完了,接下来就是重头菜了,原理看着很清晰,但实操起来,需要概率论基础以及利用微分求极值。

导数

导数的概念的其实挺简单的,这里我们不要求掌握太多的关于微积分的公式,只消会求导就可以了,关于基本初等函数的求导,大家可以在这里查找自己需要的求导公式。

复合函数的求导满足链式法则:

e911f16ddf7bfc8839cf65a500081907.png

值得一提的还有关于导函数求驻点,即令 57d805e667e925055d390947637da465.png,并求解 x,所得到的 x 即为驻点,驻点回代原函数可得极值。

02

求解极大似然估计量的四步骤

终于到了本文的小高潮࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值