DeepSeek+QuickAPI:MySQL AI 智能体终极篇(三)

目录

一、终极目标与场景

二、准备工作

三、实战:电商智能体终极进化

1. 配置训练DeepSeek了解现有的表的结构和关系

2. DeepSeek 辅助编写带 QuickAPI 参数的 SQL 语句

3. QuickAPI发布支持参数的 SQL 生成的数据 API

4. QuickAPI发布支持参数的 SQL 生成的数据 API

四、小技巧

五、总结

六、展望


进阶篇中,我们打造了一个能够处理多表关联、复杂查询和动态表结构的 MySQL AI 智能体。

本篇将基于现有 usersorders 表,进一步提升智能体能力,聚焦参数化操作和数据 API 生成,迈向生产级应用


一、终极目标与场景

本篇的目标是让智能体更贴近实际业务需求:

  1. 多表参数化查询:利用现有 usersorders 表,处理动态条件查询。

  2. 参数化 SQL:通过 DeepSeek 生成带 {{para}} 格式参数的 SQL,适配 QuickAPI。

  3. API 化:将查询能力封装成可调用的数据 API,输出 JSON 格式。

场景继续基于电商业务,假设现有数据为:

  • users:Alice、Bob、Charlie 的用户信息。

  • orders:他们的订单记录。

我们将模拟动态查询和 API 发布需求。


二、准备工作

确保以下条件已满足:

  • DeepSeek 已配置训练,能生成带 {{para}} 参数的 SQL。

  • QuickAPI 已连接 MySQL。

  • 数据库中已有进阶篇的 usersorders 表及样本数据。

若未准备好,可参考前两篇快速搭建。


三、实战:电商智能体终极进化

1. 配置训练DeepSeek了解现有的表的结构和关系

需求:“查询金额超过0的用户订单详情”

训练:输入基础表的结构信息

1.1 获取相应的表结构信息

1.2 DeepSeek获取相应的业务表结构信息

 

1.3 DeepSeek 智能体基于现有表生成 SQL,输入“查询金额超过0的用户订单详情”:

1.4 DeepSeek生成的表结构信息如下: 

SELECT 
    u.user_id,
    u.name AS user_name,
    u.email,
    o.order_id,
    o.amount,
    o.order_date
FROM 
    users u
JOIN 
    orders o ON u.user_id = o.user_id
WHERE 
    o.amount > 0
ORDER BY 
    o.order_date DESC;

说明

  • 使用现有 usersorders 表,训练DeepSeek了解表的关系。

1.5 QuickAPI中执行上述的SQL信息,校验SQL准确度


2. DeepSeek 辅助编写带 QuickAPI 参数的 SQL 语句

需求:“参数占位符为{{min_mount}},查询金额超过某值的用户订单详情,金额阈值作为参数。”

DeepSeek 智能体输出:

SELECT 
    u.user_id,
    u.name AS user_name,
    u.email,
    o.order_id,
    o.amount,
    o.order_date
FROM 
    users u
JOIN 
    orders o ON u.user_id = o.user_id
WHERE 
    o.amount > {{min_amount}}  -- 使用 {{min_amount}} 作为金额阈值参数
ORDER BY 
    o.order_date DESC;

QuickAPI 配置

  • 参数:{{min_amount}}(数值型)。

  • 示例调用:

    • 输入:{{min_amount}}=100

    • 输出:

      姓名订单ID金额下单时间
      Charlie3200.002023-07-10
      Alice1150.502023-07-01

说明:DeepSeek 生成的 SQL 使用 {{para}} 格式,QuickAPI 负责解析和执行,满足动态查询需求。


3. QuickAPI发布支持参数的 SQL 生成的数据 API

需求:“将上一步的查询封装成 API,返回 JSON 格式数据。”

这块主要是通过QuickAPI的API配置功能来生成需要的数据API产品:

  1. 输入数据API基础信息:生成名称为 DeepSeek生成的用户订单查询

  2. QuickAPI SQL配置

    • 数据源:选择相关的MySQL数据源。

    • 输入SQL语句:输入上面DeepSeek帮忙写的SQL语句

    • 参数提取:min_amount(必填)。

  3. 测试并发布数据API:

[
  {
    "user_id": "3",
    "user_name": "Charlie",
    "email": null,
    "order_id": "3",
    "amount": "200",
    "order_date": "2023-07-10 00:00:00"
  },
  {
    "user_id": "2",
    "user_name": "Bob",
    "email": null,
    "order_id": "2",
    "amount": "89.9",
    "order_date": "2023-07-05 00:00:00"
  },
  {
    "user_id": "1",
    "user_name": "Alice",
    "email": null,
    "order_id": "1",
    "amount": "150.5",
    "order_date": "2023-07-01 00:00:00"
  }
]

结果:智能体生成的参数化 SQL 通过 QuickAPI 转化为可复用的 API,适合外部调用。

4. QuickAPI发布支持参数的 SQL 生成的数据 API

进入数据市场中,此部分是直接使用生成的数据API产品,如需要代码调用API,可参考文档。

进入数据市场中,可以找到刚生成的数据API产品,在有权限的情况下,可以直接查看数据下载数据

 

 


四、小技巧

  1. 参数默认值:在 QuickAPI 中为 {{min_amount}} 设置默认值(如 0),提高容错性。

  2. 日志记录:启用 QuickAPI 日志,追踪 SQL 执行情况。

  3. 多条件组合:尝试让 DeepSeek 生成带多个 {{para}} 的 SQL,测试复杂场景。


五、总结

本篇通过参数化查询和 API 封装,将电商智能体提升到生产就绪状态。DeepSeek 的自然语言生成能力与 QuickAPI 的 {{para}} 参数支持相结合,让数据库操作更加灵活高效,真正实现了从指令到服务的跨越。

更多详情,请访问 麦聪软件官网


六、展望

未来方向:

  • 智能体自动生成优化后的 SQL(如添加索引建议)。

  • 支持批量参数输入,处理大规模数据。

  • 深度集成QuickAPI,真正让业务与数据联动。

敬请期待后续探索!

<think>好的,用户的问题是关于如何结合DEEPSEEK和DIFY在MySQL中实现自动查询及结果自动打印的功能。首先,我需要理解用户提到的各个组件及其作用。 DEEPSEEK可能指的是深度求索公司的AI服务,可能提供自然语言处理或代码生成能力。DIFY是一个开源的AI应用开发平台,允许用户构建和部署AI工作流。而MySQL是常用的关系型数据库。用户想要将这者结合起来,实现自动化查询和结果打印。 接下来,我需要考虑可能的实现步骤。首先,用户可能需要通过DIFY来设计一个工作流,触发自动查询的条件,比如定时任务或特定事件。然后,利用DEEPSEAK的API处理自然语言查询,将其转换为SQL语句。接着,执行SQL查询MySQL数据库,获取结果后,再通过某种方式输出,比如邮件、文件或打印到控制台。 需要注意的要点包括:如何安全地连接MySQL数据库,可能需要JDBC驱动和正确的连接参数,比如时区设置,如引用[1]提到的serverTimezone=Asia/Shanghai。此外,引用[2]提到DIFY有预设应用和API密钥管理,可能需要配置APIKEY来调用DEEPSEEK的服务。 可能的实现方案是,在DIFY中创建智能体,使用DEEPSEEKAPI生成SQL,然后通过Python脚本执行查询并处理结果。同时,要确保数据库连接的安全性和错误处理机制。用户可能需要编写代码或使用DIFY的插件机制来实现这些步骤。 最后,用户可能还需要考虑性能优化、权限管理和日志记录等方面,确保系统稳定可靠。需要检查是否有相关文档或社区支持,以解决在集成过程中遇到的问题。</think>### 使用 DEEPSEEK 和 DIFY 实现 MySQL 自动查询及打印 #### 一、技术架构设计 1. **DIFY 工作流**:通过 DIFY 平台构建自动化流程,支持自然语言转 SQL 查询和结果处理 2. **DEEPSEEK API**:调用其 NLP 能力将自然语言请求转换为结构化 SQL 语句 3. **MySQL 连接**:使用 Python 的 `mysql.connector` 或 SQLAlchemy 实现数据库交互,注意时区配置(如 `serverTimezone=Asia/Shanghai`)[^1] #### 二、具体实现步骤 **1. 环境准备** ```python # 安装依赖库 pip install dify-client deepseek-api mysql-connector-python ``` **2. DIFY 智能体配置**(参考控制台预设应用[^2]) ```python from dify_client import DifyClient dify = DifyClient(api_key="YOUR_API_KEY") agent = dify.get_agent("mysql_query_printer") ``` **3. 自然语言转 SQL** ```python def generate_sql(nl_query): prompt = f"将以下需求转换为MySQL查询语句:\n{nl_query}" response = deepseek.generate(prompt) return extract_sql(response) # 需要添加SQL解析逻辑 ``` **4. MySQL 查询执行** ```python import mysql.connector def execute_query(sql): conn = mysql.connector.connect( host="localhost", user="root", password="your_password", database="your_db", port=3306, charset='utf8mb4', connect_timeout=5, client_flags=[mysql.connector.ClientFlag.SSL], ssl_ca='/path/to/ca.pem', ssl_verify_cert=True ) cursor = conn.cursor(dictionary=True) cursor.execute(sql) return cursor.fetchall() ``` **5. 自动化打印模块** ```python def print_results(data, format='table'): if format == 'json': print(json.dumps(data, indent=2)) else: from tabulate import tabulate print(tabulate(data, headers="keys")) ``` #### 、安全增强措施 1. SQL 注入防护: ```python # 使用参数化查询 cursor.execute("SELECT * FROM users WHERE id = %s", (user_id,)) ``` 2. 权限控制: ```shell -- 创建专用数据库用户 CREATE USER 'dify_bot'@'%' IDENTIFIED BY 'strong_password'; GRANT SELECT ON your_db.* TO 'dify_bot'@'%'; ``` #### 四、完整工作流示例 ```python def auto_mysql_query(nl_request): try: sql = generate_sql(nl_request) # 调用DEEPSEEK results = execute_query(sql) # 执行查询 print_results(results) # 格式化输出 return {"status": "success", "data": results} except Exception as e: return {"status": "error", "message": str(e)} ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

chat2tomorrow

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值