bellman-ford算法

算法目的:主要用于解决带负权的图计算单源最短路问题。

原理:基于动态规划,反复利用已经存在的边更新最短距离。

实现核心:通过松弛操作对数组dist进行松弛

核心代码:

bool bellmanford(int n,int m)
{
    dis[0] = 0;
    int i,j;
    int flag=0;
    for(i = 0; i <= n; i++)
    {
        flag = 0;
        for(j = 0; j < m; j++)
        {
            if(dis[s[j].to] > dis[s[j].from] + s[j].w)
            {
                dis[s[j].to] = dis[s[j].from] + s[j].w;
                flag = 1;
            }
        }
        if(!flag)//某次不再更新
            break;
    }
    if(flag)//执行了n-1次对比之后,每条边都被更新,那么存在负权回路
        return true;
    else
        return false;
}
时间复杂度:O(n*m)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值