2025年数字时代的数据人才岗位与技能概述

一、前言

        在当今数字化快速发展的时代,数据已成为企业决策和战略规划的重要资产。随着数据量的激增,企业对数据人才的需求也日益增加。数据人才不仅需要具备扎实的技术能力,还需理解业务需求,以推动数据驱动的决策和创新。本文将对数字时代的33个数据岗位进行分类和概述,帮助读者了解各岗位所需的技能和工作内容。

二、数据人才岗位与技能概述

类别岗位名称技能工作内容
数据战略与治理首席数据官 (CDO)战略思维、数据治理、利益相关方管理、趋势洞察制定企业数据战略、建立数据治理委员会、协调数据相关预算与资源配置、推动数据素养培训
数据治理经理数据治理体系、元数据管理、数据质量、主数据管理搭建数据治理组织、梳理数据标准与定义、建立数据质量考核体系、开展数据资产盘点与安全分级
数据架构与开发数据架构师数据架构设计、数据建模、数据集成、元数据管理、非结构化数据调研业务架构、分析数据源、评估数据量与增长趋势、规划数据分层架构
数据工程师数据仓库建设、大数据开发、数据建模、数据调度、SQL优化开发与优化ETL/ELT数据处理流程、构建数据湖、进行数据建模、优化数据仓库表结构
大数据开发工程师大数据框架、数据存储、数据计算、流式计算、数据开发、性能优化设计大数据平台的技术架构、搭建与维护大数据集群环境、开发基于Hive/Spark/Flink的ETL程序
数据库管理员 (DBA)数据库运维、性能调优、高可用、安全合规、自动化运维规划数据库的技术选型、安装、配置、升级数据库软硬件、监控数据库性能指标
数据集成工程师数据集成架构、数据采集、数据传输、数据同步、数据流转监控分析数据源、设计数据集成架构、开发增量采集程序、搭建数据集成运维平台
数据分析与BI数据分析师数据理解、数据准备、探索性分析、数据建模、数据可视化、分析报告梳理业务指标口径、使用SQL提取数据、进行探索性分析、撰写数据分析报告
商业分析师需求分析、分析建模、产品分析、用户分析、市场分析、商业策略梳理企业关键绩效指标、收集产品、用户、市场数据、分析行业发展趋势
高级数据分析师分析方法、机器学习、因果推断、实验设计、分布式计算、分析创新设计复杂分析模型、开展因果推断分析、设计与实施实验
数据可视化工程师可视化理论、数据可视化库、多端融合、地理空间可视化、交互设计、性能优化设计可视化界面风格、开发可复用的可视化组件库、快速开发Adhoc分析页面
商业智能 (BI) 工程师BI工具、多维建模、ETL开发、自定义可视化、移动BI、商业分析搭建数据分析平台、设计主题域、构建BI语义模型、开发自动化ETL流程
数据科学与机器学习数据科学家机器学习、深度学习、自然语言处理、计算机视觉、数据可视化、业务理解分析数据特征、优化特征工程流程、设计与实施AB实验
机器学习工程师建模框架、模型工程化、模型优化、模型评估、MLOps、分布式训练设计模型评估指标、优化模型推理流程、搭建MLOps平台
NLP工程师NLP基础、词向量、文本分类、信息抽取、文本生成、知识图谱负责NLP数据标注规范制定、设计并开发NLP模型、评测NLP模型的性能瓶颈
计算机视觉工程师图像处理、图像分类、目标检测、语义分割、实例分割、视频分析负责视觉数据采集、设计和优化视觉识别模型、评估视觉模型的工业级部署性能
推荐系统工程师推荐算法、用户画像、排序学习、图神经网络、强化学习、评估优化梳理用户行为数据、开发个性化推荐算法模型、优化推荐系统的工程架构
时间序列分析工程师平稳性分析、趋势分析、周期性分析、异常检测、序列预测、因果分析分析传感器、日志等时序数据、开发设备健康度评估应用、搭建时序数据分析平台
数据平台与工具ETL工具开发工程师ETL建模、任务调度、数据质量、元数据管理、可视化开发、性能优化设计批流ETL的架构模式、开发数据质量组件、提供可视化的任务配置界面
数据可视化产品经理需求分析、产品设计、交互设计、数据故事、技术选型、项目管理调研行业数据分析的场景与痛点、设计可视化平台的核心功能、协调可视化与数据治理体系的融合
数据标注产品经理领域知识、标注规范、质量管理、激励机制、流程优化、数据安全制定各类数据的标注规范、搭建标注质量评估体系、优化标注任务的自动化分发机制
数据安全与隐私保护数据安全工程师等保测评、访问控制、数据脱敏、风险评估、安全审计、渗透测试参与等保测评、制定脱敏方案、建设数据安全管理平台
隐私保护工程师隐私政策、隐私评估、匿名化、加密计算、联邦学习、可解释AI解读个人信息保护法规、开展隐私影响评估、研究数据匿名化新方法
数据产品与运营数据产品经理需求挖掘、行业知识、数据采集、数据标准、定价模型、交付SLA分析客户业务流程、挖掘数据应用需求、设计行业数据产品、数据解决方案
数据运营经理流量分析、用户分析、活动分析、实验设计、数据应用、可视化梳理产品各环节的埋点数据、细分用户人群、建立运营数据分析模型
算法产品经理机器学习、模型评估、性能优化、需求分析、项目管理、数据问题收集业务部门对AI技术的需求、选择恰当的机器学习模型、进行离线评估
增长黑客流量分析、用户行为、病毒传播、SEO、平台运营、技术实现分析用户获取渠道、优化App/网站的新用户引导流程、策划裂变传播活动
垂直领域专家零售数据分析师销售分析、库存分析、营销分析、空间分析、需求预测、智能运营搭建门店、商品多维度的销售分析模型、监控库存水平与周转情况、评估各类营销组合的效果
金融数据分析师风控建模、交易策略、投资组合、衍生品定价、客户分析、智能投顾建立违约概率、损失率预测模型、设计Alpha选股因子、开发股票多因子选股策略
医疗健康数据分析师药物分析、疾病分析、医疗质量、健康管理、智能医疗、新药发现分析临床试验数据、研究疾病发生机理、整合患者病史数据
智慧城市数据架构师顶层设计、数据标准、智能感知、开放融合、知识图谱、算法引擎梳理智慧城市的顶层架构、设计数据采集、集成、计算、服务的技术架构
工业互联网数据专家工业协议、边缘计算、参数优化、预测性维护、工艺挖掘、设备孪生设计工业互联网的数据采集架构、开发工业现场的数据就地解析与过滤组件
人力资源数据分析师招聘分析、人才画像、组织网络分析、流失预警、干部测评、领导力发展搭建招聘全流程数字化运营平台、整合员工的履历、工作日志、邮件往来等数据

三、总结

        随着数据技术的不断进步和应用场景的日益丰富,数据人才在各行各业中的重要性愈加凸显。企业需要不断更新和提升数据人才的技能,以适应快速变化的市场需求。希望本文能够帮助读者更好地理解数据人才的岗位结构和所需技能,从而为自身职业发展提供参考和指导。关注数据领域的发展,提升自身技能,将为未来的职业生涯开辟更广阔的空间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值