免费炼丹 flux-kontext 16G 丹炉打造

炼丹炉部署(如果想直接使用,可以跳过)

下面从部署到炼丹,一步一步来

git clone https://github.com/lrzjason/T2ITrainer.git
cd T2ITrainer
#环境准备
python -m venv venv
call venv\Scripts\activate
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

# nf4模型下载
huggingface-cli download "lrzjason/flux-fill-nf4" --local-dir flux_models/fill/

# 启动炼丹炉
python ui_flux_fill.py	

20250703113320

运行后,打开对应网址即可看到可视化界面
20250703113401

素材准备

20250702203902

按照上图所示,准备素材,提示词部分,采用 flux-kontext风格的提示词,如

Remove red SUV with luggage on roof rack. Vast, flat, white salt flat landscape under a clear blue sky with distant mountains on the horizon.

并且如果显存是16gb,则图片分辨率推荐为:512,否则会爆显存

主要/常用参数说明

20250702233335

  • script
    训练脚本名称,一般不用改,训练kontext时不要改。
    示例:
    "script": "train_flux_lora_ui_kontext.py"
    

20250702233346

  • output_dir
    输出模型保存路径,建议根据实际情况修改。
    示例:
    "output_dir": "/workspace/T2ITrainer/output"
    

20250702233520

  • save_name
    保存模型的文件名。
    示例:
    "save_name": "lr2"
    

20250702233550

  • train_batch_size
    每次训练的batch大小。
    示例:
    "train_batch_size": 1
    

20250702233609

  • save_model_epochs
    每隔多少轮保存一次模型。
    示例:
    "save_model_epochs": 2
    

20250702233425

  • pretrained_model_name_or_path
    kontext模型路径。
    示例:
    "pretrained_model_name_or_path": "/workspace/T2ITrainer/flux_models/kontext"
    

20250702230226

  • train_data_dir
    训练数据集路径,换数据集时要改。
    示例:
    "train_data_dir": "/workspace/T2ITrainer/dataset/lr1"
    

20250702233455

  • resolution
    训练图片分辨率。16GB显存推荐512,否则可能爆显存。
    示例:
    "resolution": "512"
    

20250702233740

  • validation_epochs
    每隔多少轮做一次验证。
    示例:
    "validation_epochs": 2
    

20250702233751

  • validation_ratio
    验证集比例。
    示例:
    "validation_ratio": 0.1
    

点击run
20250702234023

可以在终端看到训练进度
20250702234042

免费使用说明:

点击链接

点击复刻

20250703114504

到自己空间后,左小角即可选择 GPU

20250702233857

当前绑定腾讯云账户会自动赠送 50 机时。

租用更大显存的 GPU 能够开启更大的 batch size 更快的训练,不需要的时候关闭即可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值