题目
给定一个长度为偶数的整数数组 A,只有对 A 进行重组后可以满足 “对于每个 0 <= i < len(A) / 2,都有 A[2 * i + 1] = 2 * A[2 * i]” 时,返回 true;否则,返回 false。
示例 1:
输入:[3,1,3,6]
输出:false
示例 2:
输入:[2,1,2,6]
输出:false
示例 3:
输入:[4,-2,2,-4]
输出:true
解释:我们可以用 [-2,-4] 和 [2,4] 这两组组成 [-2,-4,2,4] 或是 [2,4,-2,-4]
示例 4:
输入:[1,2,4,16,8,4]
输出:false
提示:
0 <= A.length <= 30000
A.length 为偶数
-100000 <= A[i] <= 100000
思路
方法一
题目的意思是奇数位置的数字能不能安排成它左边的那个位置的二倍。
使用的方法是统计次数、然后遍历查找的方式。需要注意的是,我们对数组进行了排序,这样保证下面的遍历是从小到大开始的。另外,由于排序之后,对于负数而言,小数字是大数字的2倍,所以,需要做一个正负的判断。
对于负数来说,我们找出它的1/2是不是在数组中;对于正数来说,我们找出它的2倍是不是在数组中。如果找到了要找的数字之后,把它的次数减去当前的数字的次数,以方便后面的统计。所以,如果所有的数字都满足条件的话,那么就一波一波的都消除掉了。
class Solution(object):
def canReorderDoubled(self, A):
"""
:type A: List[int]
:rtype: bool
"""
A.sort()
N = len(A)
count = collections.Counter(A)
for i in range(N):
if A[i] == 0 or A[i] not in count: continue
elif A[i] < 0:
if A[i] % 2 == 1 or count[A[i] / 2] == 0:
return False
else:
count[A[i] / 2] -= count[A[i]]
if count[A[i] / 2] == 0:
del count[A[i] / 2]
del count[A[i]]
else:
if count[A[i] * 2] == 0:
return False
else:
count[A[i] * 2] -= count[A[i]]
if count[A[i] * 2] == 0:
del count[A[i] * 2]
del count[A[i]]
return True
方法二
我们首先统计输入数组中所有元素出现的次数。
将统计后的字典按照key的绝对值排序.
我们只要判断字典中的当前数字的个数dict[i]是不是大于dict[2i],如果是的话,那么显然不能构成二倍数对数组,如果不是的话,我们更新dict[2i] -= dict[i]。因为可能出现这种情况{1:1, 2:2, 4:1}。
class Solution(object):
def canReorderDoubled(self, A):
"""
:type A: List[int]
:rtype: bool
"""
A_dict = collections.Counter(A)
b=sorted(A_dict, key=lambda x: abs(x))
for x in b:
if A_dict[x] > A_dict[2*x]:
return False
A_dict[2*x] -= A_dict[x]
return True