文章目录
从宏观看Transformer
首先将这个模型当成一个黑箱操作。在机器翻译中,就是输入一种语言,输出另一种语言。
那么拆开这个黑箱,我们可以看到它是由编码组件、解码组件和它们之间的连接组成。
编码组件部分由一堆编码器(encoder)构成(论文中是将6个编码器叠在一起——也可以尝试其他数字)。解码组件部分也是由相同数量(与编码器对应)的解码器(decoder)组成的。
所有的编码器在结构上都是相同的,但它们没有共享参数。每个解码器都可以分解成两个子层。
从编码器输入的句子首先会经过一个自注意力(self-attention)层,这层帮助编码器在对每个单词编码时关注输入句子的其他单词。
自注意力层的输出会传递到前馈(feed-forward)神经网络中。每个位置的单词对应的前馈神经网络都完全一样(译注:另一种解读就是一层窗口为一个单词的一维卷积神经网络)。
解码器中也有编码器的自注意力(self-attention)层和前馈(feed-forward)层。除此之外,这两个层之间还有一个注意力层,用来关注输入句子的相关部分(和seq2seq模型的注意力作用相似)。
将张量引入图景
我们已经了解了模型的主要部分,接下来我们看一下各种向量或张量(译注:张量概念是矢量概念的推广,可以简单理解矢量是一阶张量、矩阵是二阶张量。)是怎样在模型的不同部分中,将输入转化为输出的。
像大部分NLP应用一样,我们首先将每个输入单词通过词嵌入算法转换为词向量。
每个单词都被嵌入为512维的向量,我们用这些简单的方框来表示这些向量。
词嵌入过程只发生在最底层的编码器中。所有的编码器都有一个相同的特点,即它们接收一个向量列表,列表中的每个向量大小为512维。在底层(最开始)编码器中它就是词向量,但是在其他编码器中,它就是下一层编码器的输出(也是一个向量列表)。向量列表大小是我们可以设置的超参数——一般是我们训练集中最长句子的长度。
将输入序列进行词嵌入之后,每个单词都会流经编码器中的两个子层。
接下来我们看看Transformer的一个核心特性,在这里输入序列中每个位置的单词都有自己独特的路径流入编码器。在自注意力层中,这些路径之间存在依赖关系。而前馈(feed-forward)层没有这些依赖关系。因此在前馈(feed-forward)层时可以并行执行各种路径。
然后我们将以一个更短的句子为例,看看编码器的每个子层中发生了什么。
现在我们开始“编码”
如上述已经提到的,一个编码器接收向量列表作为输入,接着将向量列表中的向量传递到自注意力层进行处理,然后传递到前馈神经网络层中,将输出结果传递到下一个编码器中。
输入序列的每个单词都经过自编码过程。然后,他们各自通过前向传播神经网络——完全相同的网络,而每个向量都分别通过它。
从宏观视角看自注意力机制
下列句子是我们想要翻译的输入句子:
The animal didn’t cross the street because it was too tired
这个“it”在这个句子是指什么呢?它指的是street还是这个animal呢?这对于人类来说是一个简单的问题,但是对于算法则不是。
当模型处理这个单词“it”的时候ÿ