Chapter 7. n-step Bootstrapping

7.1 n-step TD Prediction

输入:策略 : π \pi π
算法参数:步长 α ∈ ( 0 , 1 ] \alpha \in (0,1] α(0,1],正整数 n n n
s ∈ S s \in \mathcal{S} sS,任意初始化 V ( s ) V(s) V(s)
所有存储和访问操作(对于 S t S_t St R t R_t Rt)都可以使其索引 m o d n + 1 mod n + 1 modn+1
对每个回合循环:
  初始化并存储 S 0 ≠ S_0 \ne S0̸= 终点
   T ← ∞ T \leftarrow \infty T
  对 t = 0 , 1 , 2 , … t=0,1,2, \ldots t=0,1,2, 循环:
    如果 t &lt; T t &lt; T t<T,则:
      根据 π ( ⋅ ∣ S t ) \pi(\cdot|S_t) π(St) 采取行动
      观察并将下一个奖励存储为 R t + 1 R_{t+1} Rt+1,将下一个状态存储为 S t + 1 S_{t+1} St+1
      如果 S t + 1 S_{t+1} St+1 是终点,则 T ← t + 1 T \leftarrow t+1 Tt+1
   τ ← t − n + 1 \tau \leftarrow t - n + 1 τtn+1 τ \tau τ 是状态估计正在更新的时间)
   如果 τ ≥ 0 \tau \geq 0 τ0
     G ← ∑ i = τ + 1 min ⁡ ( τ + n , T ) γ i − τ − 1 R i G \leftarrow \sum_{i=\tau+1}^{\min (\tau+n, T)} \gamma^{i-\tau-1} R_{i} Gi=τ+1min(τ+n,T)γiτ1Ri
    如果 τ + n &lt; T \tau + n &lt; T τ+n<T, 则 G ← G + γ n V ( S τ + n ) G \leftarrow G+\gamma^{n} V\left(S_{\tau+n}\right) GG+γnV(Sτ+n)
     V ( S τ ) ← V ( S τ ) + α [ G − V ( S τ ) ] V\left(S_{\tau}\right) \leftarrow V\left(S_{\tau}\right)+\alpha\left[G-V\left(S_{\tau}\right)\right] V(Sτ)V(Sτ)+α[GV(Sτ)] \quad\quad\quad ( G τ : τ + n ) \left(G_{\tau : \tau+n}\right) (Gτ:τ+n)
直到 τ = T − 1 \tau = T - 1 τ=T1

7.2 n-step Sarsa

对所有 s ∈ ( S ) s\in\mathcal(S) s(S) a ∈ ( A ) a\in\mathcal(A) a(A),任意初始化 Q ( s , a ) Q(s,a) Q(s,a)
初始化 π \pi π 关于 Q Q Q 或固定的给定策略为 ε \varepsilon ε -贪婪
算法参数:步长 α ∈ ( 0 , 1 ] \alpha \in (0,1] α(0,1],小 ε &gt; 0 \varepsilon &gt; 0 ε>0,正整数 n n n
所有存储和访问操作(对于 S t S_t St A t A_t At R t R_t Rt)都可以使其索引 m o d n + 1 mod n + 1 modn+1
对每个回合循环:
  初始化并存储 S 0 ≠ S_0 \ne S0̸= 终点
  选择并存储动作 A 0 ∼ π ( ⋅ ∣ S 0 ) A_{0} \sim \pi\left(\cdot | S_{0}\right) A0π(S0)
   T ← ∞ T \leftarrow \infty T
  对 t = 0 , 1 , 2 , … t=0,1,2, \ldots t=0,1,2, 循环:
    如果 t &lt; T t &lt; T t<T,则:
      采取行动 A t A_t At
      观察并将下一个奖励存储为 R t + 1 R_{t+1} Rt+1,将下一个状态存储为 S t + 1 S_{t+1} St+1
      如果 S t + 1 S_{t+1} St+1 是终点,则 T ← t + 1 T \leftarrow t+1 Tt+1
      否则:
      选择并存储动作 A t + 1 ∼ π ( ⋅ ∣ S t = 1 ) A_{t+1} \sim \pi\left(\cdot | S_{t=1}\right) At+1π(St=1)
     τ ← t − n + 1 \tau \leftarrow t - n + 1 τtn+1 τ \tau τ 是状态估计正在更新的时间)
    如果 τ ≥ 0 \tau \geq 0 τ0
       G ← ∑ i = τ + 1 min ⁡ ( τ + n , T ) γ i − τ − 1 R i G \leftarrow \sum_{i=\tau+1}^{\min (\tau+n, T)} \gamma^{i-\tau-1} R_{i} Gi=τ+1min(τ+n,T)γiτ1Ri
      如果 τ + n &lt; T \tau + n &lt; T τ+n<T, 则 G ← G + γ n Q ( S τ + n , A τ + n ) G \leftarrow G+\gamma^{n} Q\left(S_{\tau+n}, A_{\tau+n}\right) GG+γnQ(Sτ+n,Aτ+n) \quad\quad\quad ( G τ : τ + n ) \left(G_{\tau : \tau+n}\right) (Gτ:τ+n)
       Q ( S τ , A τ ) ← Q ( S τ , A τ ) + α [ G − Q ( S τ , A τ ) ] Q\left(S_{\tau}, A_{\tau}\right) \leftarrow Q\left(S_{\tau}, A_{\tau}\right)+\alpha\left[G-Q\left(S_{\tau}, A_{\tau}\right)\right] Q(Sτ,Aτ)Q(Sτ,Aτ)+α[GQ(Sτ,Aτ)]
      如果 π \pi π 正在被学习,那么确保 π ( ⋅ ∣ S τ ) \pi\left(\cdot | S_{\tau}\right) π(Sτ) 是关于 Q Q Q ε \varepsilon ε -贪婪
  直到 τ = T − 1 \tau = T - 1 τ=T1

7.3 n-step Off-policy Learning by Importance Sampling

输入:对所有 s ∈ ( S ) s\in\mathcal(S) s(S),一个任意的行为策略 b b b 使得 b ( a ∣ s ) &gt; 0 b(a | s)&gt;0 b(as)>0
对所有 s ∈ ( S ) s\in\mathcal(S) s(S) a ∈ ( A ) a\in\mathcal(A) a(A),任意初始化 Q ( s , a ) Q(s,a) Q(s,a)
初始化 π \pi π 关于 Q Q Q 或固定的给定策略为贪婪
算法参数:步长 α ∈ ( 0 , 1 ] \alpha \in (0,1] α(0,1],正整数 n n n
所有存储和访问操作(对于 S t S_t St A t A_t At R t R_t Rt)都可以使其索引 m o d n + 1 mod n + 1 modn+1
对每个回合循环:
  初始化并存储 S 0 ≠ S_0 \ne S0̸= 终点
  选择并存储动作 A 0 ∼ π ( ⋅ ∣ S 0 ) A_{0} \sim \pi\left(\cdot | S_{0}\right) A0π(S0)
   T ← ∞ T \leftarrow \infty T
  对 t = 0 , 1 , 2 , … t=0,1,2, \ldots t=0,1,2, 循环:
    如果 t &lt; T t &lt; T t<T,则:
      采取行动 A t A_t At
      观察并将下一个奖励存储为 R t + 1 R_{t+1} Rt+1,将下一个状态存储为 S t + 1 S_{t+1} St+1
      如果 S t + 1 S_{t+1} St+1 是终点,则
         T ← t + 1 T \leftarrow t+1 Tt+1
      否则:
        选择并存储动作 A t + 1 ∼ π ( ⋅ ∣ S t = 1 ) A_{t+1} \sim \pi\left(\cdot | S_{t=1}\right) At+1π(St=1)
     τ ← t − n + 1 \tau \leftarrow t - n + 1 τtn+1 τ \tau τ 是状态估计正在更新的时间)
    如果 τ ≥ 0 \tau \geq 0 τ0
       ρ ← ∏ i = τ + 1 min ⁡ ( τ + n − 1 , T − 1 ) π ( A i ∣ S i ) b ( A i ∣ S i ) \rho \leftarrow \prod_{i=\tau+1}^{\min (\tau+n-1, T-1)} \frac{\pi\left(A_{i} | S_{i}\right)}{b\left(A_{i} | S_{i}\right)} ρi=τ+1min(τ+n1,T1)b(AiSi)π(AiSi) \quad\quad\quad ( ρ τ + 1 : t + n − 1 ) \left(\rho_{\tau}+1 : t+n-1\right) (ρτ+1:t+n1)
       G ← ∑ i = τ + 1 min ⁡ ( τ + n , T ) γ i − τ − 1 R i G \leftarrow \sum_{i=\tau+1}^{\min (\tau+n, T)} \gamma^{i-\tau-1} R_{i} Gi=τ+1min(τ+n,T)γiτ1Ri
      如果 τ + n &lt; T \tau + n &lt; T τ+n<T, 则 G ← G + γ n Q ( S τ + n , A τ + n ) G \leftarrow G+\gamma^{n} Q\left(S_{\tau+n}, A_{\tau+n}\right) GG+γnQ(Sτ+n,Aτ+n) \quad\quad\quad ( G τ : τ + n ) \left(G_{\tau : \tau+n}\right) (Gτ:τ+n)
       Q ( S τ , A τ ) ← Q ( S τ , A τ ) + α ρ [ G − Q ( S τ , A τ ) ] Q\left(S_{\tau}, A_{\tau}\right) \leftarrow Q\left(S_{\tau}, A_{\tau}\right)+\alpha \rho\left[G-Q\left(S_{\tau}, A_{\tau}\right)\right] Q(Sτ,Aτ)Q(Sτ,Aτ)+αρ[GQ(Sτ,Aτ)]
      如果 π \pi π 正在被学习,那么确保 π ( ⋅ ∣ S τ ) \pi\left(\cdot | S_{\tau}\right) π(Sτ) 是关于 Q Q Q 贪婪
  直到 τ = T − 1 \tau = T - 1 τ=T1

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值