欧拉降幂公式的证明

思路来源

https://blog.csdn.net/weixin_38686780/article/details/81272848#%E6%AC%A7%E6%8B%89%E9%99%8D%E5%B9%82%E5%85%AC%E5%BC%8F%E4%B8%8E%E8%AF%81%E6%98%8E

心得

平时挺喜欢这种证明的,虽然用的时候直接抄板子和结论

但有空的时候证一证或者看别人的证明,也挺有意思的

欧拉降幂公式

A^K\equiv A^{K\%\phi(m)+\phi(m)}(mod\ m),K>\phi(m)

证明

①若(A,m)=1,由欧拉公式有A^{\phi(m)}\equiv 1,显然成立

②若(A,m)\neq 1,设K=a*\phi(m)+c,a\geqslant 1,0\leq c<\phi(m)

即证A^{a*\phi(m)+c}\equiv A^{\phi(m)+c}(mod\ m),K>\phi(m)

即证A^{a*\phi(m)}\equiv A^{\phi(m)}(mod\ m),K>\phi(m)

即证A^{2*\phi(m)}\equiv A^{\phi(m)}(mod\ m),K>\phi(m)

移项,即证A^{\phi(m)}*(A^{\phi(m)}-1)=0(mod\ m)(1)

 

若有(\frac{m}{(m,A^{\phi(m)})},A)=1(2),则根据欧拉公式,有

A^{\phi(m)}\equiv A^{k*\phi(\frac{m}{(m,A^{\phi(m)})})}\equiv (A^{\phi(\frac{m}{(m,A^{\phi(m)})})})^{k}\equiv 1 (mod\ (\frac{m}{(m,A^{\phi(m)})}))(3)

上式中,根据欧拉函数定义展开,可知第一项\phi(m)必为第二项\phi(\frac{m}{(m,A^{\phi(m)})})倍数

根据(3)A^{\phi(m)}-1\equiv 0 (mod\ (\frac{m}{(m,A^{\phi(m)})}))(3),显然有A^{\phi(m)}-1\equiv 0 (mod\ m)(3),这就是(1)

 

因此,若(2)成立,则原式成立

 

A=p_{1}^{a_{1}}*p_{2}^{a_{2}}*...*p_{t_{1}}^{a_{t_{1}}}*q_{1}^{b_{1}}*q_{2}^{b_{2}}*...*q_{t_{2}}^{b_{t_{2}}}

m=p_{1}^{c_{1}}*p_{2}^{c_{2}}*...*p_{t_{1}}^{c_{t_{1}}}*r_{1}^{d_{1}}*r_{2}^{d_{2}}*...*r_{t_{3}}^{d_{t_{3}}}

(A,m)=p_{1}^{min(a_{1},c_{1})}*p_{2}^{min(a_{2},c_{2})}*...*p_{t_{1}}^{​{min(a_{t_{1}},c_{t_{1}})}}

(A^{\phi(m)},m)=p_{1}^{min(a_{1}*\phi(m),c_{1})}*p_{2}^{min(a_{2}*\phi(m),c_{2})}*...*p_{t_{1}}^{​{min(a_{t_{1}}*\phi(m),c_{t_{1}})}}

由欧拉函数\phi(m)的定义,显然有a_{i}*\phi(m)\geqslant \phi(m)\geqslant p_{i}^{c_{i}-1}\geqslant 2^{c_{i}-1}\geqslant c_{i}

(A^{\phi(m)},m)=p_{1}^{c_{1}}*p_{2}^{c_{2}}*...*p_{t_{1}}^{c_{t_{1}}}=(A,m)

(\frac{m}{(m,A^{\phi(m)})},A)=(\frac{m}{(m,A)},A)=1成立,逆推知原式成立

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Code92007

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值