容性阻抗不连续对信号完整性影响

文章详细分析了容性阻抗不连续点对反射系数的影响,以RC电路为例,探讨了电容充电过程中的阻抗变化和反射现象。它指出,容性负载的反射系数随时间变化,对信号传输产生时变影响,特别是在总线系统中可能导致时序问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 背景

       容性阻抗与电阻阻抗的反射式有区别的,对于电阻性阻抗不连续点,两侧的阻抗值恒定,从而反射系数也是恒定。但是对于容性阻抗不连续点,两侧阻抗不恒定且随时间变化的,因此反射系数也是岁时间变化的。

 2. 分析

       2.1 RC电路

        如下图RC电路,根据大学电路分析知识,我们假设高电平幅度为A=1V,驱动源电阻R=50Ω,负载电容C=10pF,则电容两端电压可以表示为

V_{c}=A(1-e^{-\frac{t}{\tau}})

        其中\tau=RC为电路时间常数,当电容充电时间t= \tau时,电容两端电压为

V_{c}=A(1-e^{-1})=63.2\%\cdot A

        以上公式表明,当充电时间经历\tau时,电容电压值上升到最终值得63.2%。

RC电路拓扑

       根据电容电流公式可以得出电流:

I_{c}=C\frac{dV_{c}}{dt}=\frac{A}{R}e^{-\frac{t}{\tau}}

       因此,电容阻抗可表示为

Z_{c}=\frac{V_{c}}{I_{c}}=R(e^{\frac{t}{\tau}}-1)

       将R=50Ω,C=10pF带入上式,激励源为上升边为0的阶跃信号,电容两端电压和电流变化曲线如下图所示。当t=\tau=RC=500ps时,电容电压上升到632mV,是高电平的63.2%。

电容两端的电压和电流

       电容的阻抗曲线如下图所示,电压刚加到电容的瞬间,电容的阻抗为0,随着电容充电,阻抗逐渐增大,随着时间增加,阻抗变为无穷大,最终相当于开路。

电容的阻抗变化曲线

       从阻抗Zc表达式推算,当t=\tau \cdot ln2=347ps时,电容阻抗等于源阻抗R=50Ω,与上图电容的阻抗曲线mark结果一致。\tau =RC越大,电容阻抗变化越缓慢。

     2.2 末端容性负载的反射

      传输线末端的接收器都存在输入电容,焊盘,封装等都有一定的寄生电容。输入寄生电容有几pF到十几pF。此输入电容对信号来说就是一个阻抗不连续点,这个输入电容在末端就是一个容性负载,因此末端就会产生反射。

      如下图所示,假设激励信号上升时间为0,输出阻抗50Ω,传输线延迟为1ns,末端电容为10pF。理想方波幅度为1V,当方波经过1ns传输延时的传输线后达到末端电容,瞬间电容会有一个很大的电流,随着电容的充电,电压逐渐增大,电流逐渐减小。经过500ps之后电容电压达到632mV,正好是高电平的63.2%。与计算\tau =Z_{0}C=50\cdot 10ps=500ps很吻合。

       电容的阻抗为

Z_{c}=\frac{V_{c}}{I_{c}}={Z_{0}}(e^{\frac{t}{\tau}}-1)

       电容阻抗曲线如下图所示,经过t=\tau\cdot ln2=50x100xln2=347ps后的电容阻抗大于传输线阻抗50Ω。

电容阻抗曲线

      对于容性负载来说,阻抗是时变的,反射系数也是时变的。反射系数可以使用如下公式表示:

\Gamma =\frac{Z_{c}-Z_{0}}{Z_{c}+Z_{0}}=\frac{Z_{0}(e^{\frac{t}{\tau }}-1)-Z_{0}}{Z_{0}(e^{\frac{t}{\tau }}-1)+Z_{0}}=1-2\cdot e^{-\frac{t}{\tau }}

     1> t=1ns时,电容阻抗为0Ω,相当于短路,反射系数\Gamma =-1

     2> t=0.7\tau时,电容阻抗为50Ω,电容阻抗等于传输线阻抗,反射系数\Gamma =0

     3> t=\propto时,电容阻抗为无穷大,相当于开路,反射系数\Gamma =1

末端容性负载的反射系数

       如下图所示,发射端波形和接收端波形。在发射端,2ns后末端反射回来的信号回到发送端,入射和反射的波形叠加电压降到0,随着时间增加,电压按照指数增加,上升时间由时间常数\tau =Z_{0}C决定。若是入射信号是理想方波信号,那么指数规律的上升沿与电容充电时间两端电压变化一致,在下降沿时,会产生一个与信号跳变方向相反的脉冲波形。若在传输线发送端附近有其他的接收器,那么向下的尖峰会非常危险。

发送端波形

       在接收端,波形上升规律和电容充电时两端电压变化规律一致。若是负载时一个阻性负载,开路状态下会是下图蓝色虚线所示方波。和单纯阻性不连续相比较,容性负载延长了接收端上升沿时间,在一组同步信号总线中(比如DDR总线),某一位出现容性负载较大与其他位,可能引起时序问题。

接收端波形

         以上都是理想方波信号,也就是上升沿Tr=0ns的信号作为激励,实际数字信号上升沿不可能为0ns,我们需要看看上升沿Tr不等于0的信号作为激励,反射会有什么变化。

        假设上升沿为500ps激励源经过1ns延时的传输线到10pF的容性负载,如下图所示,发送端的波形,入射端最开始的电压不为0V,在上升沿时间2~2.5ns内,发送端波形是入射波和反射波的叠加,超过2.5ns后发送端波形是和电容两端的电压波形一致

发送端波形

         三个不同上升沿(0ps、500ps和1000ps)的激励源经过1ns延时的传输线到10pF的容性负载,如下图所示,发送端的波形

发送端波形

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值