1. 背景
容性阻抗与电阻阻抗的反射式有区别的,对于电阻性阻抗不连续点,两侧的阻抗值恒定,从而反射系数也是恒定。但是对于容性阻抗不连续点,两侧阻抗不恒定且随时间变化的,因此反射系数也是岁时间变化的。
2. 分析
2.1 RC电路
如下图RC电路,根据大学电路分析知识,我们假设高电平幅度为A=1V,驱动源电阻R=50Ω,负载电容C=10pF,则电容两端电压可以表示为
其中=RC为电路时间常数,当电容充电时间
时,电容两端电压为
以上公式表明,当充电时间经历时,电容电压值上升到最终值得63.2%。

根据电容电流公式可以得出电流:
因此,电容阻抗可表示为
将R=50Ω,C=10pF带入上式,激励源为上升边为0的阶跃信号,电容两端电压和电流变化曲线如下图所示。当t==RC=500ps时,电容电压上升到632mV,是高电平的63.2%。

电容的阻抗曲线如下图所示,电压刚加到电容的瞬间,电容的阻抗为0,随着电容充电,阻抗逐渐增大,随着时间增加,阻抗变为无穷大,最终相当于开路。

从阻抗Zc表达式推算,当t==347ps时,电容阻抗等于源阻抗R=50Ω,与上图电容的阻抗曲线mark结果一致。
越大,电容阻抗变化越缓慢。
2.2 末端容性负载的反射
传输线末端的接收器都存在输入电容,焊盘,封装等都有一定的寄生电容。输入寄生电容有几pF到十几pF。此输入电容对信号来说就是一个阻抗不连续点,这个输入电容在末端就是一个容性负载,因此末端就会产生反射。
如下图所示,假设激励信号上升时间为0,输出阻抗50Ω,传输线延迟为1ns,末端电容为10pF。理想方波幅度为1V,当方波经过1ns传输延时的传输线后达到末端电容,瞬间电容会有一个很大的电流,随着电容的充电,电压逐渐增大,电流逐渐减小。经过500ps之后电容电压达到632mV,正好是高电平的63.2%。与计算很吻合。
电容的阻抗为
电容阻抗曲线如下图所示,经过t==50x100xln2=347ps后的电容阻抗大于传输线阻抗50Ω。

对于容性负载来说,阻抗是时变的,反射系数也是时变的。反射系数可以使用如下公式表示:
1> t=1ns时,电容阻抗为0Ω,相当于短路,反射系数;
2> t=0.7时,电容阻抗为50Ω,电容阻抗等于传输线阻抗,反射系数
3> t=时,电容阻抗为无穷大,相当于开路,反射系数
;

如下图所示,发射端波形和接收端波形。在发射端,2ns后末端反射回来的信号回到发送端,入射和反射的波形叠加电压降到0,随着时间增加,电压按照指数增加,上升时间由时间常数决定。若是入射信号是理想方波信号,那么指数规律的上升沿与电容充电时间两端电压变化一致,在下降沿时,会产生一个与信号跳变方向相反的脉冲波形。若在传输线发送端附近有其他的接收器,那么向下的尖峰会非常危险。

在接收端,波形上升规律和电容充电时两端电压变化规律一致。若是负载时一个阻性负载,开路状态下会是下图蓝色虚线所示方波。和单纯阻性不连续相比较,容性负载延长了接收端上升沿时间,在一组同步信号总线中(比如DDR总线),某一位出现容性负载较大与其他位,可能引起时序问题。

以上都是理想方波信号,也就是上升沿Tr=0ns的信号作为激励,实际数字信号上升沿不可能为0ns,我们需要看看上升沿Tr不等于0的信号作为激励,反射会有什么变化。
假设上升沿为500ps激励源经过1ns延时的传输线到10pF的容性负载,如下图所示,发送端的波形,入射端最开始的电压不为0V,在上升沿时间2~2.5ns内,发送端波形是入射波和反射波的叠加,超过2.5ns后发送端波形是和电容两端的电压波形一致。

三个不同上升沿(0ps、500ps和1000ps)的激励源经过1ns延时的传输线到10pF的容性负载,如下图所示,发送端的波形
