任意一个正整数a的位数 等于(int)log10(a) + 1;为什么呢?下面给大家推导一下: 对于任意一个给定的正整数a, 假设10^(x-1)<=a<10^x,那么显然a的位数为x位, 又因为 log10(10^(x-1))<=log10(a)<(log10(10^x)) 即x-1<=log10(a)<x 则(int)log10(a)=x-1, 即(int)log10(a)+1=x 即a的位数是(int)log10(a)+1 我们知道了一个正整数a的位数等于(int)log10(a) + 1, 现在来求n的阶乘的位数: 假设A=n!=1*2*3*......*n,那么我们要求的就是 (int)log10(A)+1,而: log10(A) =log10(1*2*3*......n) (根据log10(a*b) = log10(a) + log10(b)有) =log10(1)+log10(2)+log10(3)+......+log10(n) 现在我们终于找到方法,问题解决了,我们将求n的阶乘的位 数分解成了求n个数对10取对数的和,并且对于其中任意一个数, 都在正常的数字范围之类。 总结一下:n的阶乘的位数等于 (int)(log10(1)+log10(2)+log10(3)+......+log10(n)) + 1
n!一共有多少位长度
最新推荐文章于 2021-03-16 14:52:13 发布