题意:求n的以2的次幂之和的形式组成的方法有多少种
思路:
类似递推关系,还要考虑n的奇偶性:
首先:
dp[1] = 1;
dp[2] = 2;
然后开始考虑从3开始:
当n是奇数的时候,dp[i] = dp[i-1];
当n是偶数的时候,dp[i] = dp[i-2]+dp[i/2];
很惭愧自己没想出来解法,详细解释一下:
从前面的数据推得知n为奇数时和dp[n-1]是一个结果;
但是n为偶数时要考虑组成里有没有1,因为2^0=1,所以可以有2个1组成一个2,这种情况正好是dp[n-2]的,也可能有没有1的情况,那就是dp[n/2]的,相加即为结果。
#include <iostream>
#include <cstdio>
using namespace std;
long long n,a[1000100];
void solve()
{
a[1] = 1;
a[2] = 2;
for(int i = 3 ; i < 1000100 ; i++)
{
if(i&1)
a[i] = a[i-1];
else
a[i] = a[i-2]+a[i/2];
a[i] %= 1000000000;
}
}
int main()
{
cin.tie(false);
ios::sync_with_stdio(false);
solve();
while( cin >> n )
cout << a[n] << endl;
return 0;
}