每周一题(6)
加法变乘法
题目描述
我们都知道:1+2+3+ … + 49 = 1225
现在要求你把其中两个不相邻的加号变成乘号,使得结果为2015
比如:
1+2+3+…+10×11+12+…+27×28+29+…+49 = 2015
就是符合要求的答案。
请你寻找另外一个可能的答案,并把位置靠前的那个乘号左边的数字提交(对于示例,就是提交10)。
注意:需要你提交的是一个整数,不要填写任何多余的内容。
问题来源
第六届蓝桥杯省赛B组
题解
1到49进行累加,中间使用了48个加号,将其中两个加号改成乘号,要求结果变成2015。这里因为已经确定了结果,是由1到49遍历运算得到,得数已经是确定的,所以不需要用循环来计算1到49的累加和了。
那么就从这两个符号入手:因为数的规模已经确定下来,是不大的,所以直接使用暴力计算了。因为将两个操作数不变,改变运算符号,结果也会改变,所以只需要在原来的结果上进行补差即可。
如:1×2-(1+2)=-1,2×3-(2+3)=1,3×4-(3+4)=5,……
示例:
#include<iostream>
using namespace std;
int f(int x, int y){
return (x*y)-(x+y);
}
int main(){
for(int i=1;i<49;i++){
int sum=1225;
sum+=f(i,i+1);
for(int j=i+2;j<49;j++){//题目要求两个乘号不能相邻,所以第二次乘法要从上一个往后推两个
sum+=f(j,j+1);
if(sum==2015){
cout<<i<<" "<<j<<endl;
return 0;
}else{//如果结果不满足条件,要把第二个乘号加上的数减回去,然后重新再加
sum-=f(j,j+1);
}
}
}
}
然而运算以上结果,会发现得到的正是题干给的两个数。
虽然结果是正确的,可是题目要求我们找到另一个结果,也就是说这并不是唯一答案。但是我们在进行暴力运算时,是从第一个乘号开始往后遍历的,当遍历到10,27后的这两个乘号时,就已经满足了结果,所以直接执行退出了,后面的就都没有进行运算。所以我们要从后在进行运算。
10和27后的两个乘号,能使结果是2015,那么10和28,10和29等得出的结果一定就是大于2015的了,一定是不满足条件,所以直接将第一层循环改成11开始。
示例如下:
#include<iostream>
using namespace std;
int f(int x, int y){
return (x*y)-(x+y);
}
int main(){
for(int i=11;i<49;i++){//这里从11开始
int sum=1225;
sum+=f(i,i+1);
for(int j=i+2;j<49;j++){//题目要求两个乘号不能相邻,所以第二次乘法要从上一个往后推两个
sum+=f(j,j+1);
if(sum==2015){
cout<<i<<" "<<j<<endl;
return 0;
}else{//如果结果不满足条件,要把第二个乘号加上的数减回去,然后重新再加
sum-=f(j,j+1);
}
}
}
}
得出结果为:
保险起见,在用计算器验算一下:
答案正确!那么最后向系统提交的答案就是16了。
附:时间复杂度的运算规模
这次题目比较简单,所以附给大家一点笔记。实际问题中可以根据处理数据的规模来设计算法,像这周的问题,数据规模只有10的2次方量级,所以暴力运算就可以,如果数据规模特别大,就需要改用其他更精秒的算法了。