似然函数推到过程

似然函数:

y^{(i)}=\theta ^T+\varepsilon ^{(i)}

p\left ( \varepsilon^{(i)} \right )=\frac{1}{\sigma \sqrt{2\pi }}e^{\left [ \frac{\left ( \varepsilon^{(i)} \right ) ^2}{2\sigma ^2} \right ]}

\mathbb{P}\left (p^{\(i)}|x^{\(i)};\theta \right )=\frac{1}{\sigma \sqrt{2\pi }}exp\left [-\frac{\left (y^{(i)} -\theta ^{T} x^{(i)}\right )^2}{2\sigma ^{2}} \right ]

L(\Theta )=\prod_{i=1}^{m}p(y^{(i)}|x^{(i)};\Theta )

          =\prod_{i=1}^{m}\frac{1}{\sigma \sqrt{2\pi }}exp\left [-\frac{\left (y^{(i)} -\theta ^{T} x^{(i)}\right )^2}{2\sigma ^{2}} \right ]

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值