离散数学
农夫三拳lhx
人生太长,无法简介
展开
-
矩阵、向量求导
1、行向量对元素求导2、列向量对元素求导例2:略,参考例1,把行向量转成列向量,分别对y向量的每个项进行求导。3、矩阵对元素求导4、元素对行向量求导5、元素对列向量求导例5:略,参考例46、元素对矩阵求导7、行向量对列向量求导8、列向量对行向量求导9、行向量对行向量求导行对行求导,得到的是行...原创 2019-08-27 21:22:16 · 1098 阅读 · 1 评论 -
最小二乘法
问题的引入已知某种材料在生产过程中的废品率 y 与某种化学成分x 有关,下列表中记载了 某工厂生产中y 与相应的x 几次数值: 我们想找出 y 对 x 的一个近似公式。把表中数值画出图来看,发现它的变化趋势近似于一条直线。 因此我们决定选取 x 的一次式ax+b来表示,当然最好能选择适当的 a,b,使下面的等式都成立。 实际上一般是不可能的,任何a,b代入上面各式都会发生误...原创 2019-08-28 18:50:10 · 771 阅读 · 0 评论 -
QR分解(正交三角分解)
前提:必须是列满秩的矩阵!若n阶非奇异矩阵可以分解成正交矩阵和非奇异上三角矩阵的乘积,即A=QR,则称该分解为QR分解。 对于m*n的列满秩矩阵A,有。其中Q为正交向量组,R为非奇异上三角矩阵,该分解也叫做QR分解. QR分解常用于求解A的特征值、A的逆,最小二乘等问题.施密特正交施密特正交化过程化过程QR分解步骤例题...原创 2019-08-30 20:30:55 · 76907 阅读 · 11 评论 -
谱分解(SD)
前提:必须是实对称矩阵!谱分解(Spectral Decomposition ),又称特征分解,或相似标准形分解,是将矩阵分解为由其特征值和特征向量表示的矩阵之积的方法,需要注意只有对可对角化矩阵才可以施以特征分解。它体现了线性变换的旋转和缩放的功效。设A为n阶实对称阵,则必有正交阵P,使 其中 是以 A的 n个特征值为对角元的对角阵,P 是由A的n个特征向量得到的正交矩阵。...原创 2019-08-30 20:41:17 · 35406 阅读 · 9 评论 -
奇异值分解(SVD)
前提:适用于任何矩阵,没有限制。对于任何矩阵A,都是对称矩阵,且的特征值都大于或者等于0。奇异值分解(Singular Value Decomposition)是一种重要的矩阵分解方法,可以看作是对称方阵在任意矩阵上的推广。矩阵的奇异值分解在矩阵特征值问题、最小二乘法问题及广义逆矩阵问题等方面有重要应用。它体现了线性变换的旋转、缩放和投影的功效。假设A为一个m*n阶实矩阵,则存在一...原创 2019-09-04 20:37:32 · 1114 阅读 · 0 评论