奇异值分解(SVD)

前提:适用于任何矩阵,没有限制。对于任何矩阵A,A^{T}A都是对称矩阵,且A^{T}A的特征值都大于或者等于0。

奇异值分解(Singular Value Decomposition)是一种重要的矩阵分解方法,可以看作是对称方阵在任意矩阵上的推广。

矩阵的奇异值分解在矩阵特征值问题、最小二乘法问题及广义逆矩阵问题等方面有重要应用。它体现了线性变换的旋转、缩放和投影的功效。

假设A为一个m*n阶实矩阵,则存在一个分解使得:

通常将奇异值由大到小排列,这样 Σ 便能由 A 唯一确定了。

不特征值、特征向量的概念相对应,则:

  • Σ 对角线上的元素称为矩阵 A 的奇异值;
  • U V 称为 A 的左/右奇异向量矩阵

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值