题目1085:求root(N, k)

题目描述:

    N<k时,root(N,k) = N,否则,root(N,k) = root(N',k)。N'为N的k进制表示的各位数字之和。输入x,y,k,输出root(x^y,k)的值 (这里^为乘方,不是异或),2=<k<=16,0<x,y<2000000000,有一半的测试点里 x^y 会溢出int的范围(>=2000000000) 

输入:

    每组测试数据包括一行,x(0<x<2000000000), y(0<y<2000000000), k(2<=k<=16)

输出:

    输入可能有多组数据,对于每一组数据,root(x^y, k)的值

样例输入:
4 4 10
样例输出:
4

坦率地讲,这道题自己没能独立解出来,搜索网上资料,主要有两种方法。

方法一:利用推倒的数学公式求解

方法二:利用递归求解

具体两种方法的原理及其分析过程参考下面的链接。

下面一段代码主要是方法一的求解过程,与参考链接中的方法大体一致,只是部分数据类型有所改动。


#include<stdio.h>

long long root(long long x, int y, int k) { //x一定要使用long long,否则下面的x*x容易溢出
	long long ans = 1;
	while (y != 0) {
		if ((y & 1) == 1)
			ans = (ans * x) % k;
		x = (x * x) % k;
		y = y >> 1;
	}
	return ans;
}

int main() {
	long long x;
	int y, k;
	while (scanf("%lld%d%d", &x, &y, &k) != EOF) {
		long long res = root(x, y, k - 1);
		if (res == 0)
			res = k - 1;
		printf("%lld\n", res);
	}
	return 0;
}

题目链接:

http://ac.jobdu.com/problem.php?pid=1085

参考链接:

方法一:http://blog.sina.com.cn/s/blog_8619a25801010wcy.html

http://blog.csdn.net/JDPlus/article/details/18840577

方法二:http://blog.csdn.net/Merlini_/article/details/50651349?utm_source=itdadao&utm_medium=referral

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值