-
题目描述:
-
N<k时,root(N,k) = N,否则,root(N,k) = root(N',k)。N'为N的k进制表示的各位数字之和。输入x,y,k,输出root(x^y,k)的值 (这里^为乘方,不是异或),2=<k<=16,0<x,y<2000000000,有一半的测试点里 x^y 会溢出int的范围(>=2000000000)
-
输入:
-
每组测试数据包括一行,x(0<x<2000000000), y(0<y<2000000000), k(2<=k<=16)
-
输出:
-
输入可能有多组数据,对于每一组数据,root(x^y, k)的值
-
样例输入:
-
4 4 10
-
样例输出:
-
4
坦率地讲,这道题自己没能独立解出来,搜索网上资料,主要有两种方法。
方法一:利用推倒的数学公式求解
方法二:利用递归求解
具体两种方法的原理及其分析过程参考下面的链接。
下面一段代码主要是方法一的求解过程,与参考链接中的方法大体一致,只是部分数据类型有所改动。
#include<stdio.h>
long long root(long long x, int y, int k) { //x一定要使用long long,否则下面的x*x容易溢出
long long ans = 1;
while (y != 0) {
if ((y & 1) == 1)
ans = (ans * x) % k;
x = (x * x) % k;
y = y >> 1;
}
return ans;
}
int main() {
long long x;
int y, k;
while (scanf("%lld%d%d", &x, &y, &k) != EOF) {
long long res = root(x, y, k - 1);
if (res == 0)
res = k - 1;
printf("%lld\n", res);
}
return 0;
}
题目链接:
http://ac.jobdu.com/problem.php?pid=1085
方法一:http://blog.sina.com.cn/s/blog_8619a25801010wcy.html
http://blog.csdn.net/JDPlus/article/details/18840577
方法二:http://blog.csdn.net/Merlini_/article/details/50651349?utm_source=itdadao&utm_medium=referral