51_数组中的逆序对

数组中的逆序对

在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数。

示例 1:

输入: [7,5,6,4]
输出: 5

限制:

  • 0 <= 数组长度 <= 50000

解法:最容易想到的暴力法,将元素和后面的元素一个一个的进行比较,但是这种方法的时间复杂度是O(n*n)超时。
可以使用递归排序的帮助进行计算。在递归的过程中如果前面的一个元素放下来了,后半部分有几个元素就有几个逆序对。

class Solution {
public:
    int reversePairs(vector<int>& nums) {
        if(nums.empty())
            return 0;
        vector<int> copy(nums);
        return reversePairsCore(nums,copy,0,nums.size()-1);
    }
    int reversePairsCore(vector<int>& nums,vector<int>& portionOrder,int low,int high){
        if(low == high)
            return 0;
        int length = (high - low) / 2;

        // 为了将nums变得局部有序,将其传递给portionOrder,经过递归处理以后nums前半部分将变得局部有序
        int leftCount = reversePairsCore(portionOrder,nums,low,low+length);

        // 为了将nums变得局部有序,将其传递给portionOrder,经过递归处理以后nums后半部分将变得局部有序
        int rightCount = reversePairsCore(portionOrder,nums,low+length+1,high);

        int i = low+length;
        int j = high;
        int copyIndex = high;
        int count = 0;
        while(i>=low && j>=low+length+1){
            if(nums[i]>nums[j]){
                portionOrder[copyIndex--] = nums[i--];
                count += j - (low + length);	// 后半部分还剩几个就是有几个逆序对
            } else
                portionOrder[copyIndex--] = nums[j--];
        }
        while (i>=low)
            portionOrder[copyIndex--] = nums[i--];
        while(j >= low+length+1)
            portionOrder[copyIndex--] = nums[j--];  

        // 经过上面一系列的处理后portionOrder数组在low~high这一部分已经是有序的了
        return count + leftCount + rightCount;
    }
};
``
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值