高等数学II-知识点(2)——定积分、积分上限函数、牛顿-莱布尼茨公式、定积分的换元、定积分的分部积分法

目录

定积分

定义

几何意义

可积函数类

定积分的性质

积分上限函数

定义

基本定理

牛顿-莱布尼茨公式

定积分的换元

定积分的分部积分法


定积分

定义

几何意义

  1. 在区间[a,b]上,若函数f(x)\geqslant 0,则\int_{a}^{b}f(x)dx在几何上表示为曲线y=f(x),直线x=a,x=b和x轴围成的曲边梯形的面积,即\int_{a}^{b}f(x)dx=A
  2. 若函数f(x)< 0,则\int_{a}^{b}f(x)dx=-A
  3. 若函数f(x)有正有负,则\int_{a}^{b}f(x)dx=A_1-A_2+A_3

可积函数类

可积的必要条件

若f(x)在[a,b]上可积,则f(x)是[a,b]上的有界函数。

可积函数类

  • f(x)在[a,b]上连续,则f(x)在[a,b]上可积;
  • f(x)在[a,b]上只有有限个第一类间断点;
  • f(x)在[a,b]是单调有界的。

定积分的性质

常数的积分c

\int_{a}^{b}cdx=c(b-a)

函数代数和的积分等于各函数积分的代数和

\int_{a}^{b}(f(x)\pm g(x))dx=\int_{a}^{b}f(x)dx\pm \int_{a}^{b}g(x)dx

被积函数的常数因子可提到积分号前(k为常数)

\int_{a}^{b}kf(x)dx=k\int_{a}^{b}f(x)dx

对于任意点c,有

\int_{a}^{b}f(x)dx=\int_{a}^{c}f(x)dx+\int_{c}^{b}f(x)dx

若在被积区间[a,b]被积函数f(x)\geqslant 0,则

\int_{a}^{b}f(x)dx\geqslant 0

若在被积区间[a,b]被积函数f(x)\geqslant g(x),则

\int_{a}^{b}f(x)dx\geqslant \int_{a}^{b}g(x)dx

若函数y=f(x)在[a,b]的最大值与最小值分别为M和m,则

m(b-a)\leqslant \int_{a}^{b}f(x)dx\leqslant M(b-a)

若函数y=f(x)在[a,b]连续,则在[a,b]至少存在一点\xi \in [a,b],使得

\int_{a}^{b}f(x)dx=f(\xi )(b-a)(积分中值定理)

积分上限函数

定义

基本定理

设f(x)在[a,b]上连续,则对[a,b]上任意一点x,积分上限函数的导数存在,则

\phi '(x)=(\int_{a}^{x}f(t)dt)'=f(x)

牛顿-莱布尼茨公式

\int_{a}^{b}f(x)dx=F(b)-F(a)=\left.\begin{matrix} F(x) \end{matrix}\right|_{a}^{b}

定积分的换元

一般地,定积分的换元法在引进新积分变元后,积分上、下限也要作相应的变换,即“换元必换限”

 

定积分的分部积分法

(反对幂三指)

公式:\int_{a}^{b}udv=\left.\begin{matrix} uv \end{matrix}\right|_{a}^{b}-\int_{a}^{b}vdu


end


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值