目录
定积分
定义
几何意义
- 在区间[a,b]上,若函数
,则
在几何上表示为曲线
,直线
和x轴围成的曲边梯形的面积,即
- 若函数
,则
- 若函数
有正有负,则
可积函数类
可积的必要条件:
若f(x)在[a,b]上可积,则f(x)是[a,b]上的有界函数。
可积函数类:
- f(x)在[a,b]上连续,则f(x)在[a,b]上可积;
- f(x)在[a,b]上只有有限个第一类间断点;
- f(x)在[a,b]是单调有界的。
定积分的性质
常数的积分c
函数代数和的积分等于各函数积分的代数和
被积函数的常数因子可提到积分号前(k为常数)
对于任意点c,有
若在被积区间[a,b]被积函数,则
若在被积区间[a,b]被积函数,则
若函数y=f(x)在[a,b]的最大值与最小值分别为M和m,则
若函数y=f(x)在[a,b]连续,则在[a,b]至少存在一点,使得
(积分中值定理)
积分上限函数
定义
基本定理
设f(x)在[a,b]上连续,则对[a,b]上任意一点x,积分上限函数的导数存在,则
牛顿-莱布尼茨公式
定积分的换元
一般地,定积分的换元法在引进新积分变元后,积分上、下限也要作相应的变换,即“换元必换限”。
定积分的分部积分法
(反对幂三指)
公式:
end