一、回溯理论基础
回溯法解决的问题
组合问题:N个数里面按一定规则找出k个数的集合
切割问题:一个字符串按一定规则有几种切割方式
子集问题:一个N个数的集合里有多少符合条件的子集
排列问题:N个数按一定规则全排列,有几种排列方式
棋盘问题:N皇后,解数独等等
组合无序,排列有序
如何理解回溯法
回溯法可以抽象为一个树形结构
回溯法模板
回溯三部曲:
1.递归函数的参数和返回值
2.递归的终止条件
3.确定单层递归的逻辑
void backtracking(参数) { // 一般都是void
if (终止条件) {
存放结果;
return;
}
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
}
二、组合问题
思路
为什么要有startIndex?startIndex用来来记录下一层递归,搜索的起始位置,可以防止出现重复的集合
实现代码
class Solution {
private:
vector<vector<int>> result; // 用来存放符合条件结果的集合
vector<int> path; // 用来存放符合条件的结果
void backtracking(int n, int k, int startIndex) {
if(path.size() == k) {
result.push_back(path);
return;
}
for(int i = startIndex; i <= n; i++) {
path.push_back(i); // 处理结点
backtracking(n, k, i+1); // 递归
path.pop_back(); // 回溯,撤销处理的结点
}
}
public:
vector<vector<int>> combine(int n, int k) {
result.clear();
path.clear();
backtracking(n, k, 1);
return result;
}
};
// 剪枝优化
class Solution {
private:
vector<vector<int>> result;
vector<int> path;
void backtracking(int n, int k, int startIndex) {
if (path.size() == k) {
result.push_back(path);
return;
}
for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) { // 优化的地方
path.push_back(i); // 处理节点
backtracking(n, k, i + 1);
path.pop_back(); // 回溯,撤销处理的节点
}
}
public:
vector<vector<int>> combine(int n, int k) {
backtracking(n, k, 1);
return result;
}
};