算法学习|回溯算法 回溯理论基础、组合问题

一、回溯理论基础

回溯法解决的问题

组合问题:N个数里面按一定规则找出k个数的集合
切割问题:一个字符串按一定规则有几种切割方式
子集问题:一个N个数的集合里有多少符合条件的子集
排列问题:N个数按一定规则全排列,有几种排列方式
棋盘问题:N皇后,解数独等等
组合无序,排列有序

如何理解回溯法

回溯法可以抽象为一个树形结构

回溯法模板

回溯三部曲:
1.递归函数的参数和返回值
2.递归的终止条件
3.确定单层递归的逻辑

void backtracking(参数) { // 一般都是void
    if (终止条件) {
        存放结果;
        return;
    }
    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}

二、组合问题

思路

为什么要有startIndex?startIndex用来来记录下一层递归,搜索的起始位置,可以防止出现重复的集合
在这里插入图片描述

实现代码

class Solution {
private:
    vector<vector<int>> result; // 用来存放符合条件结果的集合
    vector<int> path; // 用来存放符合条件的结果
    void backtracking(int n, int k, int startIndex) {
        if(path.size() == k) {
            result.push_back(path);
            return;
        }
        for(int i = startIndex; i <= n; i++) {
            path.push_back(i); // 处理结点
            backtracking(n, k, i+1); // 递归
            path.pop_back(); // 回溯,撤销处理的结点
        }
    }
    
public:
    vector<vector<int>> combine(int n, int k) {
        result.clear();
        path.clear();
        backtracking(n, k, 1);
        return result;
    }
};
// 剪枝优化
class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(int n, int k, int startIndex) {
        if (path.size() == k) {
            result.push_back(path);
            return;
        }
        for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) { // 优化的地方
            path.push_back(i); // 处理节点
            backtracking(n, k, i + 1);
            path.pop_back(); // 回溯,撤销处理的节点
        }
    }
public:

    vector<vector<int>> combine(int n, int k) {
        backtracking(n, k, 1);
        return result;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值