算法学习|回溯算法 LeetCode39. 组合总和 、40.组合总和II 、131.分割回文串

一、组合总和

给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。
candidates 中的数字可以无限制重复被选取。

思路

回溯三部曲
注意:因为candidates 中的数字可以无限制重复被选取,所以backtracking中i不需要加一
剪枝优化:先排序,再剪枝
在这里插入图片描述

实现代码

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>&candidates, int target, int sum, int startIndex) {
        if(sum > target) return;
        if(sum == target) {
            result.push_back(path);
            return;
        }
        for(int i = startIndex; i < candidates.size(); i++) {
            path.push_back(candidates[i]);
            sum += candidates[i];
            backtracking(candidates, target, sum, i);
            sum -= candidates[i];
            path.pop_back();
        }
    }
public:
    vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
        backtracking(candidates, target, 0, 0);
        return result;    
    }
};
//剪枝优化
class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>&candidates, int target, int sum, int startIndex) {
        if(sum > target) return;
        if(sum == target) {
            result.push_back(path);
            return;
        }
        for(int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {
            path.push_back(candidates[i]);
            sum += candidates[i];
            backtracking(candidates, target, sum, i);
            sum -= candidates[i];
            path.pop_back();
        }
    }
public:
    vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
        result.clear();
        path.clear();
        sort(candidates.begin(), candidates.end());
        backtracking(candidates, target, 0, 0);
        return result;    
    }
};

二、组合总和||

给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。
candidates 中的每个数字在每个组合中只能使用一次。
说明: 所有数字(包括目标数)都是正整数。解集不能包含重复的组合。

思路

注意:集合中有重复数值,解集中不能包含重复的组合
排序之后进行去重,要去重的是同一树层上使用过的元素

在candidates[i] == candidates[i - 1]相同的情况下:
used[i - 1] == true(进入下一层递归),说明同一树枝candidates[i - 1]使用过
used[i - 1] == false,说明同一树层candidates[i - 1]使用过

在这里插入图片描述

实现代码

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& candidates, int target, int sum, int startIndex , vector<bool>& used) {
        if(sum > target) return;
        if(sum == target) {
            result.push_back(path);
            return;
        }
        for(int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {
            if(i > 0 && candidates[i] == candidates[i - 1] && used[i - 1] == false) {
                continue;
            }
            path.push_back(candidates[i]);
            sum += candidates[i];
            used[i] = true;
            backtracking(candidates, target, sum, i + 1,used);
            used[i] = false;
            sum -= candidates[i];
            path.pop_back();   
        }
    }
public:
    vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
        vector<bool> used(candidates.size(), false);
        sort(candidates.begin(), candidates.end());
        backtracking(candidates, target, 0, 0, used);
        return result;
    }
};

三、分割回文串

给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串。
返回 s 所有可能的分割方案。
回文串 是正着读和反着读都一样的字符串。
示例: 输入: “aab” 输出: [ [“aa”,“b”], [“a”,“a”,“b”] ]

思路

startIndex,表示下一轮递归遍历的起始位置,startIndex就是切割线
在这里插入图片描述

实现代码

class Solution {
private:
    vector<vector<string>> result;
    vector<string> path;
    void backtracking(const string& s, int startIndex) {
        if(startIndex >= s.size()) {
            result.push_back(path);
            return;
        }
        for(int i = startIndex; i < s.size(); i++) {
            if(isPalindrome(s, startIndex, i)) {
                string str = s.substr(startIndex, i - startIndex + 1);
                path.push_back(str);
            } else {
                continue;
            }
            backtracking(s, i + 1);
            path.pop_back();
        }
    }
    bool isPalindrome(const string& s, int start, int end) {
        for(int i = start, j = end; i < j; i++, j--) {
            if(s[i] != s[j]) {
                return false;
            }
        }
        return true;
    }
public:
    vector<vector<string>> partition(string s) {
        backtracking(s, 0);
        return result;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值