一、组合总和
给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。
candidates 中的数字可以无限制重复被选取。
思路
回溯三部曲
注意:因为candidates 中的数字可以无限制重复被选取,所以backtracking中i不需要加一
剪枝优化:先排序,再剪枝
实现代码
class Solution {
private:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>&candidates, int target, int sum, int startIndex) {
if(sum > target) return;
if(sum == target) {
result.push_back(path);
return;
}
for(int i = startIndex; i < candidates.size(); i++) {
path.push_back(candidates[i]);
sum += candidates[i];
backtracking(candidates, target, sum, i);
sum -= candidates[i];
path.pop_back();
}
}
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
backtracking(candidates, target, 0, 0);
return result;
}
};
//剪枝优化
class Solution {
private:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>&candidates, int target, int sum, int startIndex) {
if(sum > target) return;
if(sum == target) {
result.push_back(path);
return;
}
for(int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {
path.push_back(candidates[i]);
sum += candidates[i];
backtracking(candidates, target, sum, i);
sum -= candidates[i];
path.pop_back();
}
}
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
result.clear();
path.clear();
sort(candidates.begin(), candidates.end());
backtracking(candidates, target, 0, 0);
return result;
}
};
二、组合总和||
给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。
candidates 中的每个数字在每个组合中只能使用一次。
说明: 所有数字(包括目标数)都是正整数。解集不能包含重复的组合。
思路
注意:集合中有重复数值,解集中不能包含重复的组合
排序之后进行去重,要去重的是同一树层上使用过的元素
在candidates[i] == candidates[i - 1]相同的情况下:
used[i - 1] == true(进入下一层递归),说明同一树枝candidates[i - 1]使用过
used[i - 1] == false,说明同一树层candidates[i - 1]使用过
实现代码
class Solution {
private:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& candidates, int target, int sum, int startIndex , vector<bool>& used) {
if(sum > target) return;
if(sum == target) {
result.push_back(path);
return;
}
for(int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {
if(i > 0 && candidates[i] == candidates[i - 1] && used[i - 1] == false) {
continue;
}
path.push_back(candidates[i]);
sum += candidates[i];
used[i] = true;
backtracking(candidates, target, sum, i + 1,used);
used[i] = false;
sum -= candidates[i];
path.pop_back();
}
}
public:
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
vector<bool> used(candidates.size(), false);
sort(candidates.begin(), candidates.end());
backtracking(candidates, target, 0, 0, used);
return result;
}
};
三、分割回文串
给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串。
返回 s 所有可能的分割方案。
回文串 是正着读和反着读都一样的字符串。
示例: 输入: “aab” 输出: [ [“aa”,“b”], [“a”,“a”,“b”] ]
思路
startIndex,表示下一轮递归遍历的起始位置,startIndex就是切割线
实现代码
class Solution {
private:
vector<vector<string>> result;
vector<string> path;
void backtracking(const string& s, int startIndex) {
if(startIndex >= s.size()) {
result.push_back(path);
return;
}
for(int i = startIndex; i < s.size(); i++) {
if(isPalindrome(s, startIndex, i)) {
string str = s.substr(startIndex, i - startIndex + 1);
path.push_back(str);
} else {
continue;
}
backtracking(s, i + 1);
path.pop_back();
}
}
bool isPalindrome(const string& s, int start, int end) {
for(int i = start, j = end; i < j; i++, j--) {
if(s[i] != s[j]) {
return false;
}
}
return true;
}
public:
vector<vector<string>> partition(string s) {
backtracking(s, 0);
return result;
}
};